Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{9v-6}{v^{2}-6v+5}-\frac{5\left(v-1\right)v^{2}}{5v^{2}\left(v^{3}-2\right)}
Factor the expressions that are not already factored in \frac{5v^{3}-5v^{2}}{5v^{5}-10v^{2}}.
\frac{9v-6}{v^{2}-6v+5}-\frac{v-1}{v^{3}-2}
Cancel out 5v^{2} in both numerator and denominator.
\frac{9v-6}{\left(v-5\right)\left(v-1\right)}-\frac{v-1}{v^{3}-2}
Factor v^{2}-6v+5.
\frac{\left(9v-6\right)\left(v^{3}-2\right)}{\left(v-5\right)\left(v-1\right)\left(v^{3}-2\right)}-\frac{\left(v-1\right)\left(v-5\right)\left(v-1\right)}{\left(v-5\right)\left(v-1\right)\left(v^{3}-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(v-5\right)\left(v-1\right) and v^{3}-2 is \left(v-5\right)\left(v-1\right)\left(v^{3}-2\right). Multiply \frac{9v-6}{\left(v-5\right)\left(v-1\right)} times \frac{v^{3}-2}{v^{3}-2}. Multiply \frac{v-1}{v^{3}-2} times \frac{\left(v-5\right)\left(v-1\right)}{\left(v-5\right)\left(v-1\right)}.
\frac{\left(9v-6\right)\left(v^{3}-2\right)-\left(v-1\right)\left(v-5\right)\left(v-1\right)}{\left(v-5\right)\left(v-1\right)\left(v^{3}-2\right)}
Since \frac{\left(9v-6\right)\left(v^{3}-2\right)}{\left(v-5\right)\left(v-1\right)\left(v^{3}-2\right)} and \frac{\left(v-1\right)\left(v-5\right)\left(v-1\right)}{\left(v-5\right)\left(v-1\right)\left(v^{3}-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9v^{4}-18v-6v^{3}+12-v^{3}+6v^{2}-5v+v^{2}-6v+5}{\left(v-5\right)\left(v-1\right)\left(v^{3}-2\right)}
Do the multiplications in \left(9v-6\right)\left(v^{3}-2\right)-\left(v-1\right)\left(v-5\right)\left(v-1\right).
\frac{9v^{4}-29v-7v^{3}+17+7v^{2}}{\left(v-5\right)\left(v-1\right)\left(v^{3}-2\right)}
Combine like terms in 9v^{4}-18v-6v^{3}+12-v^{3}+6v^{2}-5v+v^{2}-6v+5.
\frac{9v^{4}-29v-7v^{3}+17+7v^{2}}{v^{5}-6v^{4}+5v^{3}-2v^{2}+12v-10}
Expand \left(v-5\right)\left(v-1\right)\left(v^{3}-2\right).
\frac{9v-6}{v^{2}-6v+5}-\frac{5\left(v-1\right)v^{2}}{5v^{2}\left(v^{3}-2\right)}
Factor the expressions that are not already factored in \frac{5v^{3}-5v^{2}}{5v^{5}-10v^{2}}.
\frac{9v-6}{v^{2}-6v+5}-\frac{v-1}{v^{3}-2}
Cancel out 5v^{2} in both numerator and denominator.
\frac{9v-6}{\left(v-5\right)\left(v-1\right)}-\frac{v-1}{v^{3}-2}
Factor v^{2}-6v+5.
\frac{\left(9v-6\right)\left(v^{3}-2\right)}{\left(v-5\right)\left(v-1\right)\left(v^{3}-2\right)}-\frac{\left(v-1\right)\left(v-5\right)\left(v-1\right)}{\left(v-5\right)\left(v-1\right)\left(v^{3}-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(v-5\right)\left(v-1\right) and v^{3}-2 is \left(v-5\right)\left(v-1\right)\left(v^{3}-2\right). Multiply \frac{9v-6}{\left(v-5\right)\left(v-1\right)} times \frac{v^{3}-2}{v^{3}-2}. Multiply \frac{v-1}{v^{3}-2} times \frac{\left(v-5\right)\left(v-1\right)}{\left(v-5\right)\left(v-1\right)}.
\frac{\left(9v-6\right)\left(v^{3}-2\right)-\left(v-1\right)\left(v-5\right)\left(v-1\right)}{\left(v-5\right)\left(v-1\right)\left(v^{3}-2\right)}
Since \frac{\left(9v-6\right)\left(v^{3}-2\right)}{\left(v-5\right)\left(v-1\right)\left(v^{3}-2\right)} and \frac{\left(v-1\right)\left(v-5\right)\left(v-1\right)}{\left(v-5\right)\left(v-1\right)\left(v^{3}-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9v^{4}-18v-6v^{3}+12-v^{3}+6v^{2}-5v+v^{2}-6v+5}{\left(v-5\right)\left(v-1\right)\left(v^{3}-2\right)}
Do the multiplications in \left(9v-6\right)\left(v^{3}-2\right)-\left(v-1\right)\left(v-5\right)\left(v-1\right).
\frac{9v^{4}-29v-7v^{3}+17+7v^{2}}{\left(v-5\right)\left(v-1\right)\left(v^{3}-2\right)}
Combine like terms in 9v^{4}-18v-6v^{3}+12-v^{3}+6v^{2}-5v+v^{2}-6v+5.
\frac{9v^{4}-29v-7v^{3}+17+7v^{2}}{v^{5}-6v^{4}+5v^{3}-2v^{2}+12v-10}
Expand \left(v-5\right)\left(v-1\right)\left(v^{3}-2\right).