Evaluate
90
Factor
2\times 3^{2}\times 5
Share
Copied to clipboard
\frac{9\times 10^{3}\times 45\times 5\times 10^{-6}}{\left(15\times 10^{-2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 9 and -6 to get 3.
\frac{9\times 10^{-3}\times 45\times 5}{\left(15\times 10^{-2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 3 and -6 to get -3.
\frac{9\times \frac{1}{1000}\times 45\times 5}{\left(15\times 10^{-2}\right)^{2}}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{\frac{9}{1000}\times 45\times 5}{\left(15\times 10^{-2}\right)^{2}}
Multiply 9 and \frac{1}{1000} to get \frac{9}{1000}.
\frac{\frac{81}{200}\times 5}{\left(15\times 10^{-2}\right)^{2}}
Multiply \frac{9}{1000} and 45 to get \frac{81}{200}.
\frac{\frac{81}{40}}{\left(15\times 10^{-2}\right)^{2}}
Multiply \frac{81}{200} and 5 to get \frac{81}{40}.
\frac{\frac{81}{40}}{\left(15\times \frac{1}{100}\right)^{2}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{\frac{81}{40}}{\left(\frac{3}{20}\right)^{2}}
Multiply 15 and \frac{1}{100} to get \frac{3}{20}.
\frac{\frac{81}{40}}{\frac{9}{400}}
Calculate \frac{3}{20} to the power of 2 and get \frac{9}{400}.
\frac{81}{40}\times \frac{400}{9}
Divide \frac{81}{40} by \frac{9}{400} by multiplying \frac{81}{40} by the reciprocal of \frac{9}{400}.
90
Multiply \frac{81}{40} and \frac{400}{9} to get 90.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}