\frac { ( 9 \cdot 10 ^ { 9 } ) \cdot ( 2,0 \cdot 10 ^ { - 9 } ) \cdot ( 5,0 \cdot 10 ^ { - 6 } ) } { ( 3,0 \times 10 ^ { - 2 } ) ^ { 2 } }
Evaluate
\frac{1}{10}=0,1
Factor
\frac{1}{2 \cdot 5} = 0.1
Share
Copied to clipboard
\frac{9\times 2\times 5\times 10^{-6}}{\left(3\times 10^{-2}\right)^{2}}
Multiply 10^{9} and 10^{-9} to get 1.
\frac{18\times 5\times 10^{-6}}{\left(3\times 10^{-2}\right)^{2}}
Multiply 9 and 2 to get 18.
\frac{90\times 10^{-6}}{\left(3\times 10^{-2}\right)^{2}}
Multiply 18 and 5 to get 90.
\frac{90\times \frac{1}{1000000}}{\left(3\times 10^{-2}\right)^{2}}
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{\frac{9}{100000}}{\left(3\times 10^{-2}\right)^{2}}
Multiply 90 and \frac{1}{1000000} to get \frac{9}{100000}.
\frac{\frac{9}{100000}}{\left(3\times \frac{1}{100}\right)^{2}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{\frac{9}{100000}}{\left(\frac{3}{100}\right)^{2}}
Multiply 3 and \frac{1}{100} to get \frac{3}{100}.
\frac{\frac{9}{100000}}{\frac{9}{10000}}
Calculate \frac{3}{100} to the power of 2 and get \frac{9}{10000}.
\frac{9}{100000}\times \frac{10000}{9}
Divide \frac{9}{100000} by \frac{9}{10000} by multiplying \frac{9}{100000} by the reciprocal of \frac{9}{10000}.
\frac{1}{10}
Multiply \frac{9}{100000} and \frac{10000}{9} to get \frac{1}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}