Evaluate
\frac{55a}{372}-\frac{275}{1116}
Expand
\frac{55a}{372}-\frac{275}{1116}
Share
Copied to clipboard
\frac{\frac{10^{2}}{\left(9-1\right)^{2}}\times \frac{3a-5}{29+2}}{\frac{9^{2}+9}{9^{2}+9-2}}
Add 9 and 1 to get 10.
\frac{\frac{100}{\left(9-1\right)^{2}}\times \frac{3a-5}{29+2}}{\frac{9^{2}+9}{9^{2}+9-2}}
Calculate 10 to the power of 2 and get 100.
\frac{\frac{100}{8^{2}}\times \frac{3a-5}{29+2}}{\frac{9^{2}+9}{9^{2}+9-2}}
Subtract 1 from 9 to get 8.
\frac{\frac{100}{64}\times \frac{3a-5}{29+2}}{\frac{9^{2}+9}{9^{2}+9-2}}
Calculate 8 to the power of 2 and get 64.
\frac{\frac{25}{16}\times \frac{3a-5}{29+2}}{\frac{9^{2}+9}{9^{2}+9-2}}
Reduce the fraction \frac{100}{64} to lowest terms by extracting and canceling out 4.
\frac{\frac{25}{16}\times \frac{3a-5}{31}}{\frac{9^{2}+9}{9^{2}+9-2}}
Add 29 and 2 to get 31.
\frac{\frac{25\left(3a-5\right)}{16\times 31}}{\frac{9^{2}+9}{9^{2}+9-2}}
Multiply \frac{25}{16} times \frac{3a-5}{31} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{25\left(3a-5\right)}{16\times 31}}{\frac{81+9}{9^{2}+9-2}}
Calculate 9 to the power of 2 and get 81.
\frac{\frac{25\left(3a-5\right)}{16\times 31}}{\frac{90}{9^{2}+9-2}}
Add 81 and 9 to get 90.
\frac{\frac{25\left(3a-5\right)}{16\times 31}}{\frac{90}{81+9-2}}
Calculate 9 to the power of 2 and get 81.
\frac{\frac{25\left(3a-5\right)}{16\times 31}}{\frac{90}{90-2}}
Add 81 and 9 to get 90.
\frac{\frac{25\left(3a-5\right)}{16\times 31}}{\frac{90}{88}}
Subtract 2 from 90 to get 88.
\frac{\frac{25\left(3a-5\right)}{16\times 31}}{\frac{45}{44}}
Reduce the fraction \frac{90}{88} to lowest terms by extracting and canceling out 2.
\frac{25\left(3a-5\right)\times 44}{16\times 31\times 45}
Divide \frac{25\left(3a-5\right)}{16\times 31} by \frac{45}{44} by multiplying \frac{25\left(3a-5\right)}{16\times 31} by the reciprocal of \frac{45}{44}.
\frac{5\times 11\left(3a-5\right)}{4\times 9\times 31}
Cancel out 4\times 5 in both numerator and denominator.
\frac{55\left(3a-5\right)}{4\times 9\times 31}
Multiply 5 and 11 to get 55.
\frac{55\left(3a-5\right)}{36\times 31}
Multiply 4 and 9 to get 36.
\frac{55\left(3a-5\right)}{1116}
Multiply 36 and 31 to get 1116.
\frac{165a-275}{1116}
Use the distributive property to multiply 55 by 3a-5.
\frac{\frac{10^{2}}{\left(9-1\right)^{2}}\times \frac{3a-5}{29+2}}{\frac{9^{2}+9}{9^{2}+9-2}}
Add 9 and 1 to get 10.
\frac{\frac{100}{\left(9-1\right)^{2}}\times \frac{3a-5}{29+2}}{\frac{9^{2}+9}{9^{2}+9-2}}
Calculate 10 to the power of 2 and get 100.
\frac{\frac{100}{8^{2}}\times \frac{3a-5}{29+2}}{\frac{9^{2}+9}{9^{2}+9-2}}
Subtract 1 from 9 to get 8.
\frac{\frac{100}{64}\times \frac{3a-5}{29+2}}{\frac{9^{2}+9}{9^{2}+9-2}}
Calculate 8 to the power of 2 and get 64.
\frac{\frac{25}{16}\times \frac{3a-5}{29+2}}{\frac{9^{2}+9}{9^{2}+9-2}}
Reduce the fraction \frac{100}{64} to lowest terms by extracting and canceling out 4.
\frac{\frac{25}{16}\times \frac{3a-5}{31}}{\frac{9^{2}+9}{9^{2}+9-2}}
Add 29 and 2 to get 31.
\frac{\frac{25\left(3a-5\right)}{16\times 31}}{\frac{9^{2}+9}{9^{2}+9-2}}
Multiply \frac{25}{16} times \frac{3a-5}{31} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{25\left(3a-5\right)}{16\times 31}}{\frac{81+9}{9^{2}+9-2}}
Calculate 9 to the power of 2 and get 81.
\frac{\frac{25\left(3a-5\right)}{16\times 31}}{\frac{90}{9^{2}+9-2}}
Add 81 and 9 to get 90.
\frac{\frac{25\left(3a-5\right)}{16\times 31}}{\frac{90}{81+9-2}}
Calculate 9 to the power of 2 and get 81.
\frac{\frac{25\left(3a-5\right)}{16\times 31}}{\frac{90}{90-2}}
Add 81 and 9 to get 90.
\frac{\frac{25\left(3a-5\right)}{16\times 31}}{\frac{90}{88}}
Subtract 2 from 90 to get 88.
\frac{\frac{25\left(3a-5\right)}{16\times 31}}{\frac{45}{44}}
Reduce the fraction \frac{90}{88} to lowest terms by extracting and canceling out 2.
\frac{25\left(3a-5\right)\times 44}{16\times 31\times 45}
Divide \frac{25\left(3a-5\right)}{16\times 31} by \frac{45}{44} by multiplying \frac{25\left(3a-5\right)}{16\times 31} by the reciprocal of \frac{45}{44}.
\frac{5\times 11\left(3a-5\right)}{4\times 9\times 31}
Cancel out 4\times 5 in both numerator and denominator.
\frac{55\left(3a-5\right)}{4\times 9\times 31}
Multiply 5 and 11 to get 55.
\frac{55\left(3a-5\right)}{36\times 31}
Multiply 4 and 9 to get 36.
\frac{55\left(3a-5\right)}{1116}
Multiply 36 and 31 to get 1116.
\frac{165a-275}{1116}
Use the distributive property to multiply 55 by 3a-5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}