Solve for b
b=-5\sqrt{195}i\approx -0-69.821200219i
b=5\sqrt{195}i\approx 69.821200219i
Share
Copied to clipboard
-20\left(85-30\right)\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
Variable b cannot be equal to any of the values -85,85 since division by zero is not defined. Multiply both sides of the equation by 20\left(b-85\right)\left(b+85\right), the least common multiple of \left(85-b\right)\left(85+b\right),20.
-20\times 55\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
Subtract 30 from 85 to get 55.
-1100\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
Multiply -20 and 55 to get -1100.
-1100\times 121=11\left(b-85\right)\left(b+85\right)
Add 85 and 36 to get 121.
-133100=11\left(b-85\right)\left(b+85\right)
Multiply -1100 and 121 to get -133100.
-133100=\left(11b-935\right)\left(b+85\right)
Use the distributive property to multiply 11 by b-85.
-133100=11b^{2}-79475
Use the distributive property to multiply 11b-935 by b+85 and combine like terms.
11b^{2}-79475=-133100
Swap sides so that all variable terms are on the left hand side.
11b^{2}=-133100+79475
Add 79475 to both sides.
11b^{2}=-53625
Add -133100 and 79475 to get -53625.
b^{2}=\frac{-53625}{11}
Divide both sides by 11.
b^{2}=-4875
Divide -53625 by 11 to get -4875.
b=5\sqrt{195}i b=-5\sqrt{195}i
The equation is now solved.
-20\left(85-30\right)\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
Variable b cannot be equal to any of the values -85,85 since division by zero is not defined. Multiply both sides of the equation by 20\left(b-85\right)\left(b+85\right), the least common multiple of \left(85-b\right)\left(85+b\right),20.
-20\times 55\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
Subtract 30 from 85 to get 55.
-1100\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
Multiply -20 and 55 to get -1100.
-1100\times 121=11\left(b-85\right)\left(b+85\right)
Add 85 and 36 to get 121.
-133100=11\left(b-85\right)\left(b+85\right)
Multiply -1100 and 121 to get -133100.
-133100=\left(11b-935\right)\left(b+85\right)
Use the distributive property to multiply 11 by b-85.
-133100=11b^{2}-79475
Use the distributive property to multiply 11b-935 by b+85 and combine like terms.
11b^{2}-79475=-133100
Swap sides so that all variable terms are on the left hand side.
11b^{2}-79475+133100=0
Add 133100 to both sides.
11b^{2}+53625=0
Add -79475 and 133100 to get 53625.
b=\frac{0±\sqrt{0^{2}-4\times 11\times 53625}}{2\times 11}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 11 for a, 0 for b, and 53625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times 11\times 53625}}{2\times 11}
Square 0.
b=\frac{0±\sqrt{-44\times 53625}}{2\times 11}
Multiply -4 times 11.
b=\frac{0±\sqrt{-2359500}}{2\times 11}
Multiply -44 times 53625.
b=\frac{0±110\sqrt{195}i}{2\times 11}
Take the square root of -2359500.
b=\frac{0±110\sqrt{195}i}{22}
Multiply 2 times 11.
b=5\sqrt{195}i
Now solve the equation b=\frac{0±110\sqrt{195}i}{22} when ± is plus.
b=-5\sqrt{195}i
Now solve the equation b=\frac{0±110\sqrt{195}i}{22} when ± is minus.
b=5\sqrt{195}i b=-5\sqrt{195}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}