Solve for x
x=\frac{-3y+\sqrt{73}-57}{8}
Solve for y
y=\frac{-8x+\sqrt{73}-57}{3}
Graph
Share
Copied to clipboard
\frac{8x+3y+57}{\sqrt{64+3^{2}}}=1
Calculate 8 to the power of 2 and get 64.
\frac{8x+3y+57}{\sqrt{64+9}}=1
Calculate 3 to the power of 2 and get 9.
\frac{8x+3y+57}{\sqrt{73}}=1
Add 64 and 9 to get 73.
\frac{\left(8x+3y+57\right)\sqrt{73}}{\left(\sqrt{73}\right)^{2}}=1
Rationalize the denominator of \frac{8x+3y+57}{\sqrt{73}} by multiplying numerator and denominator by \sqrt{73}.
\frac{\left(8x+3y+57\right)\sqrt{73}}{73}=1
The square of \sqrt{73} is 73.
\frac{8x\sqrt{73}+3y\sqrt{73}+57\sqrt{73}}{73}=1
Use the distributive property to multiply 8x+3y+57 by \sqrt{73}.
8x\sqrt{73}+3y\sqrt{73}+57\sqrt{73}=73
Multiply both sides by 73.
8x\sqrt{73}+57\sqrt{73}=73-3y\sqrt{73}
Subtract 3y\sqrt{73} from both sides.
8x\sqrt{73}=73-3y\sqrt{73}-57\sqrt{73}
Subtract 57\sqrt{73} from both sides.
8\sqrt{73}x=-3\sqrt{73}y+73-57\sqrt{73}
The equation is in standard form.
\frac{8\sqrt{73}x}{8\sqrt{73}}=\frac{\sqrt{73}\left(-3y+\sqrt{73}-57\right)}{8\sqrt{73}}
Divide both sides by 8\sqrt{73}.
x=\frac{\sqrt{73}\left(-3y+\sqrt{73}-57\right)}{8\sqrt{73}}
Dividing by 8\sqrt{73} undoes the multiplication by 8\sqrt{73}.
x=\frac{-3y+\sqrt{73}-57}{8}
Divide \left(\sqrt{73}-3y-57\right)\sqrt{73} by 8\sqrt{73}.
\frac{8x+3y+57}{\sqrt{64+3^{2}}}=1
Calculate 8 to the power of 2 and get 64.
\frac{8x+3y+57}{\sqrt{64+9}}=1
Calculate 3 to the power of 2 and get 9.
\frac{8x+3y+57}{\sqrt{73}}=1
Add 64 and 9 to get 73.
\frac{\left(8x+3y+57\right)\sqrt{73}}{\left(\sqrt{73}\right)^{2}}=1
Rationalize the denominator of \frac{8x+3y+57}{\sqrt{73}} by multiplying numerator and denominator by \sqrt{73}.
\frac{\left(8x+3y+57\right)\sqrt{73}}{73}=1
The square of \sqrt{73} is 73.
\frac{8x\sqrt{73}+3y\sqrt{73}+57\sqrt{73}}{73}=1
Use the distributive property to multiply 8x+3y+57 by \sqrt{73}.
8x\sqrt{73}+3y\sqrt{73}+57\sqrt{73}=73
Multiply both sides by 73.
3y\sqrt{73}+57\sqrt{73}=73-8x\sqrt{73}
Subtract 8x\sqrt{73} from both sides.
3y\sqrt{73}=73-8x\sqrt{73}-57\sqrt{73}
Subtract 57\sqrt{73} from both sides.
3\sqrt{73}y=-8\sqrt{73}x+73-57\sqrt{73}
The equation is in standard form.
\frac{3\sqrt{73}y}{3\sqrt{73}}=\frac{\sqrt{73}\left(-8x+\sqrt{73}-57\right)}{3\sqrt{73}}
Divide both sides by 3\sqrt{73}.
y=\frac{\sqrt{73}\left(-8x+\sqrt{73}-57\right)}{3\sqrt{73}}
Dividing by 3\sqrt{73} undoes the multiplication by 3\sqrt{73}.
y=-\frac{8x}{3}+\frac{\sqrt{73}}{3}-19
Divide \left(\sqrt{73}-8x-57\right)\sqrt{73} by 3\sqrt{73}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}