Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8ab^{3}\right)^{-2}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Divide \frac{\left(8ab^{3}\right)^{-2}}{a^{3}b^{-1}c} by \frac{\left(2b\right)^{3}c}{\left(ab^{2}\right)^{2}} by multiplying \frac{\left(8ab^{3}\right)^{-2}}{a^{3}b^{-1}c} by the reciprocal of \frac{\left(2b\right)^{3}c}{\left(ab^{2}\right)^{2}}.
\frac{8^{-2}a^{-2}\left(b^{3}\right)^{-2}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Expand \left(8ab^{3}\right)^{-2}.
\frac{8^{-2}a^{-2}b^{-6}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{\frac{1}{64}a^{-2}b^{-6}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Calculate 8 to the power of -2 and get \frac{1}{64}.
\frac{\frac{1}{64}a^{-2}b^{-6}a^{2}\left(b^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Expand \left(ab^{2}\right)^{2}.
\frac{\frac{1}{64}a^{-2}b^{-6}a^{2}b^{4}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{64}b^{-6}b^{4}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Multiply a^{-2} and a^{2} to get 1.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
To multiply powers of the same base, add their exponents. Add -6 and 4 to get -2.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c^{2}\times \left(2b\right)^{3}}
Multiply c and c to get c^{2}.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c^{2}\times 2^{3}b^{3}}
Expand \left(2b\right)^{3}.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c^{2}\times 8b^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{2}c^{2}\times 8}
To multiply powers of the same base, add their exponents. Add -1 and 3 to get 2.
\frac{\frac{1}{64}}{8c^{2}a^{3}b^{4}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{64\times 8c^{2}a^{3}b^{4}}
Express \frac{\frac{1}{64}}{8c^{2}a^{3}b^{4}} as a single fraction.
\frac{1}{512c^{2}a^{3}b^{4}}
Multiply 64 and 8 to get 512.
\frac{\left(8ab^{3}\right)^{-2}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Divide \frac{\left(8ab^{3}\right)^{-2}}{a^{3}b^{-1}c} by \frac{\left(2b\right)^{3}c}{\left(ab^{2}\right)^{2}} by multiplying \frac{\left(8ab^{3}\right)^{-2}}{a^{3}b^{-1}c} by the reciprocal of \frac{\left(2b\right)^{3}c}{\left(ab^{2}\right)^{2}}.
\frac{8^{-2}a^{-2}\left(b^{3}\right)^{-2}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Expand \left(8ab^{3}\right)^{-2}.
\frac{8^{-2}a^{-2}b^{-6}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{\frac{1}{64}a^{-2}b^{-6}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Calculate 8 to the power of -2 and get \frac{1}{64}.
\frac{\frac{1}{64}a^{-2}b^{-6}a^{2}\left(b^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Expand \left(ab^{2}\right)^{2}.
\frac{\frac{1}{64}a^{-2}b^{-6}a^{2}b^{4}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{64}b^{-6}b^{4}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Multiply a^{-2} and a^{2} to get 1.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
To multiply powers of the same base, add their exponents. Add -6 and 4 to get -2.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c^{2}\times \left(2b\right)^{3}}
Multiply c and c to get c^{2}.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c^{2}\times 2^{3}b^{3}}
Expand \left(2b\right)^{3}.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c^{2}\times 8b^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{2}c^{2}\times 8}
To multiply powers of the same base, add their exponents. Add -1 and 3 to get 2.
\frac{\frac{1}{64}}{8c^{2}a^{3}b^{4}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{64\times 8c^{2}a^{3}b^{4}}
Express \frac{\frac{1}{64}}{8c^{2}a^{3}b^{4}} as a single fraction.
\frac{1}{512c^{2}a^{3}b^{4}}
Multiply 64 and 8 to get 512.