Evaluate
\frac{1}{512c^{2}a^{3}b^{4}}
Expand
\frac{1}{512c^{2}a^{3}b^{4}}
Share
Copied to clipboard
\frac{\left(8ab^{3}\right)^{-2}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Divide \frac{\left(8ab^{3}\right)^{-2}}{a^{3}b^{-1}c} by \frac{\left(2b\right)^{3}c}{\left(ab^{2}\right)^{2}} by multiplying \frac{\left(8ab^{3}\right)^{-2}}{a^{3}b^{-1}c} by the reciprocal of \frac{\left(2b\right)^{3}c}{\left(ab^{2}\right)^{2}}.
\frac{8^{-2}a^{-2}\left(b^{3}\right)^{-2}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Expand \left(8ab^{3}\right)^{-2}.
\frac{8^{-2}a^{-2}b^{-6}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{\frac{1}{64}a^{-2}b^{-6}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Calculate 8 to the power of -2 and get \frac{1}{64}.
\frac{\frac{1}{64}a^{-2}b^{-6}a^{2}\left(b^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Expand \left(ab^{2}\right)^{2}.
\frac{\frac{1}{64}a^{-2}b^{-6}a^{2}b^{4}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{64}b^{-6}b^{4}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Multiply a^{-2} and a^{2} to get 1.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
To multiply powers of the same base, add their exponents. Add -6 and 4 to get -2.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c^{2}\times \left(2b\right)^{3}}
Multiply c and c to get c^{2}.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c^{2}\times 2^{3}b^{3}}
Expand \left(2b\right)^{3}.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c^{2}\times 8b^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{2}c^{2}\times 8}
To multiply powers of the same base, add their exponents. Add -1 and 3 to get 2.
\frac{\frac{1}{64}}{8c^{2}a^{3}b^{4}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{64\times 8c^{2}a^{3}b^{4}}
Express \frac{\frac{1}{64}}{8c^{2}a^{3}b^{4}} as a single fraction.
\frac{1}{512c^{2}a^{3}b^{4}}
Multiply 64 and 8 to get 512.
\frac{\left(8ab^{3}\right)^{-2}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Divide \frac{\left(8ab^{3}\right)^{-2}}{a^{3}b^{-1}c} by \frac{\left(2b\right)^{3}c}{\left(ab^{2}\right)^{2}} by multiplying \frac{\left(8ab^{3}\right)^{-2}}{a^{3}b^{-1}c} by the reciprocal of \frac{\left(2b\right)^{3}c}{\left(ab^{2}\right)^{2}}.
\frac{8^{-2}a^{-2}\left(b^{3}\right)^{-2}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Expand \left(8ab^{3}\right)^{-2}.
\frac{8^{-2}a^{-2}b^{-6}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{\frac{1}{64}a^{-2}b^{-6}\left(ab^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Calculate 8 to the power of -2 and get \frac{1}{64}.
\frac{\frac{1}{64}a^{-2}b^{-6}a^{2}\left(b^{2}\right)^{2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Expand \left(ab^{2}\right)^{2}.
\frac{\frac{1}{64}a^{-2}b^{-6}a^{2}b^{4}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{64}b^{-6}b^{4}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
Multiply a^{-2} and a^{2} to get 1.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c\times \left(2b\right)^{3}c}
To multiply powers of the same base, add their exponents. Add -6 and 4 to get -2.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c^{2}\times \left(2b\right)^{3}}
Multiply c and c to get c^{2}.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c^{2}\times 2^{3}b^{3}}
Expand \left(2b\right)^{3}.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{-1}c^{2}\times 8b^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{\frac{1}{64}b^{-2}}{a^{3}b^{2}c^{2}\times 8}
To multiply powers of the same base, add their exponents. Add -1 and 3 to get 2.
\frac{\frac{1}{64}}{8c^{2}a^{3}b^{4}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{64\times 8c^{2}a^{3}b^{4}}
Express \frac{\frac{1}{64}}{8c^{2}a^{3}b^{4}} as a single fraction.
\frac{1}{512c^{2}a^{3}b^{4}}
Multiply 64 and 8 to get 512.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}