\frac { ( 79 + 11 ) : 97 + ( - 15 - 40 ) } { ( 63 - 86 }
Evaluate
\frac{5245}{2231}\approx 2.350963693
Factor
\frac{5 \cdot 1049}{23 \cdot 97} = 2\frac{783}{2231} = 2.3509636934110265
Share
Copied to clipboard
\frac{\frac{90}{97}-15-40}{63-86}
Add 79 and 11 to get 90.
\frac{\frac{90}{97}-\frac{1455}{97}-40}{63-86}
Convert 15 to fraction \frac{1455}{97}.
\frac{\frac{90-1455}{97}-40}{63-86}
Since \frac{90}{97} and \frac{1455}{97} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1365}{97}-40}{63-86}
Subtract 1455 from 90 to get -1365.
\frac{-\frac{1365}{97}-\frac{3880}{97}}{63-86}
Convert 40 to fraction \frac{3880}{97}.
\frac{\frac{-1365-3880}{97}}{63-86}
Since -\frac{1365}{97} and \frac{3880}{97} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{5245}{97}}{63-86}
Subtract 3880 from -1365 to get -5245.
\frac{-\frac{5245}{97}}{-23}
Subtract 86 from 63 to get -23.
\frac{-5245}{97\left(-23\right)}
Express \frac{-\frac{5245}{97}}{-23} as a single fraction.
\frac{-5245}{-2231}
Multiply 97 and -23 to get -2231.
\frac{5245}{2231}
Fraction \frac{-5245}{-2231} can be simplified to \frac{5245}{2231} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}