Evaluate
3
Factor
3
Share
Copied to clipboard
\frac{\left(\frac{21+1}{3}\right)^{2}-\left(\frac{2\times 3+2}{3}\right)^{2}}{\left(\frac{5\times 9+7}{9}\right)^{2}-\left(\frac{4\times 9+2}{9}\right)^{2}}
Multiply 7 and 3 to get 21.
\frac{\left(\frac{22}{3}\right)^{2}-\left(\frac{2\times 3+2}{3}\right)^{2}}{\left(\frac{5\times 9+7}{9}\right)^{2}-\left(\frac{4\times 9+2}{9}\right)^{2}}
Add 21 and 1 to get 22.
\frac{\frac{484}{9}-\left(\frac{2\times 3+2}{3}\right)^{2}}{\left(\frac{5\times 9+7}{9}\right)^{2}-\left(\frac{4\times 9+2}{9}\right)^{2}}
Calculate \frac{22}{3} to the power of 2 and get \frac{484}{9}.
\frac{\frac{484}{9}-\left(\frac{6+2}{3}\right)^{2}}{\left(\frac{5\times 9+7}{9}\right)^{2}-\left(\frac{4\times 9+2}{9}\right)^{2}}
Multiply 2 and 3 to get 6.
\frac{\frac{484}{9}-\left(\frac{8}{3}\right)^{2}}{\left(\frac{5\times 9+7}{9}\right)^{2}-\left(\frac{4\times 9+2}{9}\right)^{2}}
Add 6 and 2 to get 8.
\frac{\frac{484}{9}-\frac{64}{9}}{\left(\frac{5\times 9+7}{9}\right)^{2}-\left(\frac{4\times 9+2}{9}\right)^{2}}
Calculate \frac{8}{3} to the power of 2 and get \frac{64}{9}.
\frac{\frac{140}{3}}{\left(\frac{5\times 9+7}{9}\right)^{2}-\left(\frac{4\times 9+2}{9}\right)^{2}}
Subtract \frac{64}{9} from \frac{484}{9} to get \frac{140}{3}.
\frac{\frac{140}{3}}{\left(\frac{45+7}{9}\right)^{2}-\left(\frac{4\times 9+2}{9}\right)^{2}}
Multiply 5 and 9 to get 45.
\frac{\frac{140}{3}}{\left(\frac{52}{9}\right)^{2}-\left(\frac{4\times 9+2}{9}\right)^{2}}
Add 45 and 7 to get 52.
\frac{\frac{140}{3}}{\frac{2704}{81}-\left(\frac{4\times 9+2}{9}\right)^{2}}
Calculate \frac{52}{9} to the power of 2 and get \frac{2704}{81}.
\frac{\frac{140}{3}}{\frac{2704}{81}-\left(\frac{36+2}{9}\right)^{2}}
Multiply 4 and 9 to get 36.
\frac{\frac{140}{3}}{\frac{2704}{81}-\left(\frac{38}{9}\right)^{2}}
Add 36 and 2 to get 38.
\frac{\frac{140}{3}}{\frac{2704}{81}-\frac{1444}{81}}
Calculate \frac{38}{9} to the power of 2 and get \frac{1444}{81}.
\frac{\frac{140}{3}}{\frac{140}{9}}
Subtract \frac{1444}{81} from \frac{2704}{81} to get \frac{140}{9}.
\frac{140}{3}\times \frac{9}{140}
Divide \frac{140}{3} by \frac{140}{9} by multiplying \frac{140}{3} by the reciprocal of \frac{140}{9}.
3
Multiply \frac{140}{3} and \frac{9}{140} to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}