Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{64^{-\frac{1}{3}}\left(x^{3}\right)^{-\frac{1}{3}}}{4x^{-\frac{1}{4}}}
Expand \left(64x^{3}\right)^{-\frac{1}{3}}.
\frac{64^{-\frac{1}{3}}x^{-1}}{4x^{-\frac{1}{4}}}
To raise a power to another power, multiply the exponents. Multiply 3 and -\frac{1}{3} to get -1.
\frac{\frac{1}{4}x^{-1}}{4x^{-\frac{1}{4}}}
Calculate 64 to the power of -\frac{1}{3} and get \frac{1}{4}.
\frac{\frac{1}{4}}{4x^{\frac{3}{4}}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{4\times 4x^{\frac{3}{4}}}
Express \frac{\frac{1}{4}}{4x^{\frac{3}{4}}} as a single fraction.
\frac{1}{16x^{\frac{3}{4}}}
Multiply 4 and 4 to get 16.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{64^{-\frac{1}{3}}\left(x^{3}\right)^{-\frac{1}{3}}}{4x^{-\frac{1}{4}}})
Expand \left(64x^{3}\right)^{-\frac{1}{3}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{64^{-\frac{1}{3}}x^{-1}}{4x^{-\frac{1}{4}}})
To raise a power to another power, multiply the exponents. Multiply 3 and -\frac{1}{3} to get -1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{4}x^{-1}}{4x^{-\frac{1}{4}}})
Calculate 64 to the power of -\frac{1}{3} and get \frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{4}}{4x^{\frac{3}{4}}})
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4\times 4x^{\frac{3}{4}}})
Express \frac{\frac{1}{4}}{4x^{\frac{3}{4}}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{16x^{\frac{3}{4}}})
Multiply 4 and 4 to get 16.
-\left(16x^{\frac{3}{4}}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(16x^{\frac{3}{4}})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(16x^{\frac{3}{4}}\right)^{-2}\times \frac{3}{4}\times 16x^{\frac{3}{4}-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-12x^{-\frac{1}{4}}\times \left(16x^{\frac{3}{4}}\right)^{-2}
Simplify.