Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(6\times \frac{1}{1000}\right)^{2}}{x-6\times 10^{-3}}=4.4\times 10^{-4}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{\left(\frac{3}{500}\right)^{2}}{x-6\times 10^{-3}}=4.4\times 10^{-4}
Multiply 6 and \frac{1}{1000} to get \frac{3}{500}.
\frac{\frac{9}{250000}}{x-6\times 10^{-3}}=4.4\times 10^{-4}
Calculate \frac{3}{500} to the power of 2 and get \frac{9}{250000}.
\frac{\frac{9}{250000}}{x-6\times \frac{1}{1000}}=4.4\times 10^{-4}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{\frac{9}{250000}}{x-\frac{3}{500}}=4.4\times 10^{-4}
Multiply 6 and \frac{1}{1000} to get \frac{3}{500}.
\frac{9}{250000\left(x-\frac{3}{500}\right)}=4.4\times 10^{-4}
Express \frac{\frac{9}{250000}}{x-\frac{3}{500}} as a single fraction.
\frac{9}{250000\left(x-\frac{3}{500}\right)}=4.4\times \frac{1}{10000}
Calculate 10 to the power of -4 and get \frac{1}{10000}.
\frac{9}{250000\left(x-\frac{3}{500}\right)}=\frac{11}{25000}
Multiply 4.4 and \frac{1}{10000} to get \frac{11}{25000}.
\frac{9}{250000x-1500}=\frac{11}{25000}
Use the distributive property to multiply 250000 by x-\frac{3}{500}.
50\times 9=11\left(500x-3\right)
Variable x cannot be equal to \frac{3}{500} since division by zero is not defined. Multiply both sides of the equation by 25000\left(500x-3\right), the least common multiple of 250000x-1500,25000.
450=11\left(500x-3\right)
Multiply 50 and 9 to get 450.
450=5500x-33
Use the distributive property to multiply 11 by 500x-3.
5500x-33=450
Swap sides so that all variable terms are on the left hand side.
5500x=450+33
Add 33 to both sides.
5500x=483
Add 450 and 33 to get 483.
x=\frac{483}{5500}
Divide both sides by 5500.