Evaluate
\frac{9}{2}=4.5
Factor
\frac{3 ^ {2}}{2} = 4\frac{1}{2} = 4.5
Graph
Share
Copied to clipboard
\frac{6^{2}\left(x^{3}\right)^{2}}{\left(2x^{2}\right)^{3}}\times \left(3x^{2}\right)^{0}
Expand \left(6x^{3}\right)^{2}.
\frac{6^{2}x^{6}}{\left(2x^{2}\right)^{3}}\times \left(3x^{2}\right)^{0}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{36x^{6}}{\left(2x^{2}\right)^{3}}\times \left(3x^{2}\right)^{0}
Calculate 6 to the power of 2 and get 36.
\frac{36x^{6}}{2^{3}\left(x^{2}\right)^{3}}\times \left(3x^{2}\right)^{0}
Expand \left(2x^{2}\right)^{3}.
\frac{36x^{6}}{2^{3}x^{6}}\times \left(3x^{2}\right)^{0}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{36x^{6}}{8x^{6}}\times \left(3x^{2}\right)^{0}
Calculate 2 to the power of 3 and get 8.
\frac{9}{2}\times \left(3x^{2}\right)^{0}
Cancel out 4x^{6} in both numerator and denominator.
\frac{9}{2}\times 1
Calculate 3x^{2} to the power of 0 and get 1.
\frac{9}{2}
Multiply \frac{9}{2} and 1 to get \frac{9}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}