Evaluate
\frac{\sqrt{3}}{2}\approx 0.866025404
Share
Copied to clipboard
\frac{36+24\sqrt{3}+4\left(\sqrt{3}\right)^{2}+\left(4\sqrt{3}\right)^{2}-\left(2\sqrt{6}\right)^{2}}{2\left(6+2\sqrt{3}\right)\times 4\sqrt{3}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6+2\sqrt{3}\right)^{2}.
\frac{36+24\sqrt{3}+4\times 3+\left(4\sqrt{3}\right)^{2}-\left(2\sqrt{6}\right)^{2}}{2\left(6+2\sqrt{3}\right)\times 4\sqrt{3}}
The square of \sqrt{3} is 3.
\frac{36+24\sqrt{3}+12+\left(4\sqrt{3}\right)^{2}-\left(2\sqrt{6}\right)^{2}}{2\left(6+2\sqrt{3}\right)\times 4\sqrt{3}}
Multiply 4 and 3 to get 12.
\frac{48+24\sqrt{3}+\left(4\sqrt{3}\right)^{2}-\left(2\sqrt{6}\right)^{2}}{2\left(6+2\sqrt{3}\right)\times 4\sqrt{3}}
Add 36 and 12 to get 48.
\frac{48+24\sqrt{3}+4^{2}\left(\sqrt{3}\right)^{2}-\left(2\sqrt{6}\right)^{2}}{2\left(6+2\sqrt{3}\right)\times 4\sqrt{3}}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{48+24\sqrt{3}+16\left(\sqrt{3}\right)^{2}-\left(2\sqrt{6}\right)^{2}}{2\left(6+2\sqrt{3}\right)\times 4\sqrt{3}}
Calculate 4 to the power of 2 and get 16.
\frac{48+24\sqrt{3}+16\times 3-\left(2\sqrt{6}\right)^{2}}{2\left(6+2\sqrt{3}\right)\times 4\sqrt{3}}
The square of \sqrt{3} is 3.
\frac{48+24\sqrt{3}+48-\left(2\sqrt{6}\right)^{2}}{2\left(6+2\sqrt{3}\right)\times 4\sqrt{3}}
Multiply 16 and 3 to get 48.
\frac{96+24\sqrt{3}-\left(2\sqrt{6}\right)^{2}}{2\left(6+2\sqrt{3}\right)\times 4\sqrt{3}}
Add 48 and 48 to get 96.
\frac{96+24\sqrt{3}-2^{2}\left(\sqrt{6}\right)^{2}}{2\left(6+2\sqrt{3}\right)\times 4\sqrt{3}}
Expand \left(2\sqrt{6}\right)^{2}.
\frac{96+24\sqrt{3}-4\left(\sqrt{6}\right)^{2}}{2\left(6+2\sqrt{3}\right)\times 4\sqrt{3}}
Calculate 2 to the power of 2 and get 4.
\frac{96+24\sqrt{3}-4\times 6}{2\left(6+2\sqrt{3}\right)\times 4\sqrt{3}}
The square of \sqrt{6} is 6.
\frac{96+24\sqrt{3}-24}{2\left(6+2\sqrt{3}\right)\times 4\sqrt{3}}
Multiply 4 and 6 to get 24.
\frac{72+24\sqrt{3}}{2\left(6+2\sqrt{3}\right)\times 4\sqrt{3}}
Subtract 24 from 96 to get 72.
\frac{72+24\sqrt{3}}{8\left(6+2\sqrt{3}\right)\sqrt{3}}
Multiply 2 and 4 to get 8.
\frac{\left(72+24\sqrt{3}\right)\sqrt{3}}{8\left(6+2\sqrt{3}\right)\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{72+24\sqrt{3}}{8\left(6+2\sqrt{3}\right)\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(72+24\sqrt{3}\right)\sqrt{3}}{8\left(6+2\sqrt{3}\right)\times 3}
The square of \sqrt{3} is 3.
\frac{\left(72+24\sqrt{3}\right)\sqrt{3}}{24\left(6+2\sqrt{3}\right)}
Multiply 8 and 3 to get 24.
\frac{72\sqrt{3}+24\left(\sqrt{3}\right)^{2}}{24\left(6+2\sqrt{3}\right)}
Use the distributive property to multiply 72+24\sqrt{3} by \sqrt{3}.
\frac{72\sqrt{3}+24\times 3}{24\left(6+2\sqrt{3}\right)}
The square of \sqrt{3} is 3.
\frac{72\sqrt{3}+72}{24\left(6+2\sqrt{3}\right)}
Multiply 24 and 3 to get 72.
\frac{72\sqrt{3}+72}{144+48\sqrt{3}}
Use the distributive property to multiply 24 by 6+2\sqrt{3}.
\frac{\left(72\sqrt{3}+72\right)\left(144-48\sqrt{3}\right)}{\left(144+48\sqrt{3}\right)\left(144-48\sqrt{3}\right)}
Rationalize the denominator of \frac{72\sqrt{3}+72}{144+48\sqrt{3}} by multiplying numerator and denominator by 144-48\sqrt{3}.
\frac{\left(72\sqrt{3}+72\right)\left(144-48\sqrt{3}\right)}{144^{2}-\left(48\sqrt{3}\right)^{2}}
Consider \left(144+48\sqrt{3}\right)\left(144-48\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(72\sqrt{3}+72\right)\left(144-48\sqrt{3}\right)}{20736-\left(48\sqrt{3}\right)^{2}}
Calculate 144 to the power of 2 and get 20736.
\frac{\left(72\sqrt{3}+72\right)\left(144-48\sqrt{3}\right)}{20736-48^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(48\sqrt{3}\right)^{2}.
\frac{\left(72\sqrt{3}+72\right)\left(144-48\sqrt{3}\right)}{20736-2304\left(\sqrt{3}\right)^{2}}
Calculate 48 to the power of 2 and get 2304.
\frac{\left(72\sqrt{3}+72\right)\left(144-48\sqrt{3}\right)}{20736-2304\times 3}
The square of \sqrt{3} is 3.
\frac{\left(72\sqrt{3}+72\right)\left(144-48\sqrt{3}\right)}{20736-6912}
Multiply 2304 and 3 to get 6912.
\frac{\left(72\sqrt{3}+72\right)\left(144-48\sqrt{3}\right)}{13824}
Subtract 6912 from 20736 to get 13824.
\frac{6912\sqrt{3}-3456\left(\sqrt{3}\right)^{2}+10368}{13824}
Use the distributive property to multiply 72\sqrt{3}+72 by 144-48\sqrt{3} and combine like terms.
\frac{6912\sqrt{3}-3456\times 3+10368}{13824}
The square of \sqrt{3} is 3.
\frac{6912\sqrt{3}-10368+10368}{13824}
Multiply -3456 and 3 to get -10368.
\frac{6912\sqrt{3}}{13824}
Add -10368 and 10368 to get 0.
\frac{1}{2}\sqrt{3}
Divide 6912\sqrt{3} by 13824 to get \frac{1}{2}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}