Solve for y
y=\frac{49\times 10^{0.24}}{200000000}-0.051\approx -0.050999574
Graph
Share
Copied to clipboard
\frac{5.1\times \frac{1}{100}+y}{2.45\times 10^{-2}}=10^{-4.76}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{\frac{51}{1000}+y}{2.45\times 10^{-2}}=10^{-4.76}
Multiply 5.1 and \frac{1}{100} to get \frac{51}{1000}.
\frac{\frac{51}{1000}+y}{2.45\times \frac{1}{100}}=10^{-4.76}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{\frac{51}{1000}+y}{\frac{49}{2000}}=10^{-4.76}
Multiply 2.45 and \frac{1}{100} to get \frac{49}{2000}.
\frac{\frac{51}{1000}}{\frac{49}{2000}}+\frac{y}{\frac{49}{2000}}=10^{-4.76}
Divide each term of \frac{51}{1000}+y by \frac{49}{2000} to get \frac{\frac{51}{1000}}{\frac{49}{2000}}+\frac{y}{\frac{49}{2000}}.
\frac{51}{1000}\times \frac{2000}{49}+\frac{y}{\frac{49}{2000}}=10^{-4.76}
Divide \frac{51}{1000} by \frac{49}{2000} by multiplying \frac{51}{1000} by the reciprocal of \frac{49}{2000}.
\frac{102}{49}+\frac{y}{\frac{49}{2000}}=10^{-4.76}
Multiply \frac{51}{1000} and \frac{2000}{49} to get \frac{102}{49}.
\frac{y}{\frac{49}{2000}}=10^{-4.76}-\frac{102}{49}
Subtract \frac{102}{49} from both sides.
\frac{2000}{49}y=\frac{10^{0.24}}{100000}-\frac{102}{49}
The equation is in standard form.
\frac{\frac{2000}{49}y}{\frac{2000}{49}}=\frac{\frac{10^{0.24}}{100000}-\frac{102}{49}}{\frac{2000}{49}}
Divide both sides of the equation by \frac{2000}{49}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{\frac{10^{0.24}}{100000}-\frac{102}{49}}{\frac{2000}{49}}
Dividing by \frac{2000}{49} undoes the multiplication by \frac{2000}{49}.
y=\frac{49\times 10^{0.24}}{200000000}-\frac{51}{1000}
Divide \frac{10^{0.24}}{100000}-\frac{102}{49} by \frac{2000}{49} by multiplying \frac{10^{0.24}}{100000}-\frac{102}{49} by the reciprocal of \frac{2000}{49}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}