Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5.1\times \frac{1}{100}+y}{2.45\times 10^{-2}}=10^{-4.76}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{\frac{51}{1000}+y}{2.45\times 10^{-2}}=10^{-4.76}
Multiply 5.1 and \frac{1}{100} to get \frac{51}{1000}.
\frac{\frac{51}{1000}+y}{2.45\times \frac{1}{100}}=10^{-4.76}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{\frac{51}{1000}+y}{\frac{49}{2000}}=10^{-4.76}
Multiply 2.45 and \frac{1}{100} to get \frac{49}{2000}.
\frac{\frac{51}{1000}}{\frac{49}{2000}}+\frac{y}{\frac{49}{2000}}=10^{-4.76}
Divide each term of \frac{51}{1000}+y by \frac{49}{2000} to get \frac{\frac{51}{1000}}{\frac{49}{2000}}+\frac{y}{\frac{49}{2000}}.
\frac{51}{1000}\times \frac{2000}{49}+\frac{y}{\frac{49}{2000}}=10^{-4.76}
Divide \frac{51}{1000} by \frac{49}{2000} by multiplying \frac{51}{1000} by the reciprocal of \frac{49}{2000}.
\frac{102}{49}+\frac{y}{\frac{49}{2000}}=10^{-4.76}
Multiply \frac{51}{1000} and \frac{2000}{49} to get \frac{102}{49}.
\frac{y}{\frac{49}{2000}}=10^{-4.76}-\frac{102}{49}
Subtract \frac{102}{49} from both sides.
\frac{2000}{49}y=\frac{10^{0.24}}{100000}-\frac{102}{49}
The equation is in standard form.
\frac{\frac{2000}{49}y}{\frac{2000}{49}}=\frac{\frac{10^{0.24}}{100000}-\frac{102}{49}}{\frac{2000}{49}}
Divide both sides of the equation by \frac{2000}{49}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{\frac{10^{0.24}}{100000}-\frac{102}{49}}{\frac{2000}{49}}
Dividing by \frac{2000}{49} undoes the multiplication by \frac{2000}{49}.
y=\frac{49\times 10^{0.24}}{200000000}-\frac{51}{1000}
Divide \frac{10^{0.24}}{100000}-\frac{102}{49} by \frac{2000}{49} by multiplying \frac{10^{0.24}}{100000}-\frac{102}{49} by the reciprocal of \frac{2000}{49}.