Solve for x
x = \frac{\sqrt{122} + 12}{11} \approx 2.09503282
x=\frac{12-\sqrt{122}}{11}\approx 0.086785362
Graph
Share
Copied to clipboard
\left(5x-4\right)\left(5x+4\right)=\left(6x-2\right)^{2}-18
Multiply both sides of the equation by 4.
\left(5x\right)^{2}-16=\left(6x-2\right)^{2}-18
Consider \left(5x-4\right)\left(5x+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
5^{2}x^{2}-16=\left(6x-2\right)^{2}-18
Expand \left(5x\right)^{2}.
25x^{2}-16=\left(6x-2\right)^{2}-18
Calculate 5 to the power of 2 and get 25.
25x^{2}-16=36x^{2}-24x+4-18
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-2\right)^{2}.
25x^{2}-16=36x^{2}-24x-14
Subtract 18 from 4 to get -14.
25x^{2}-16-36x^{2}=-24x-14
Subtract 36x^{2} from both sides.
-11x^{2}-16=-24x-14
Combine 25x^{2} and -36x^{2} to get -11x^{2}.
-11x^{2}-16+24x=-14
Add 24x to both sides.
-11x^{2}-16+24x+14=0
Add 14 to both sides.
-11x^{2}-2+24x=0
Add -16 and 14 to get -2.
-11x^{2}+24x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-24±\sqrt{24^{2}-4\left(-11\right)\left(-2\right)}}{2\left(-11\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -11 for a, 24 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\left(-11\right)\left(-2\right)}}{2\left(-11\right)}
Square 24.
x=\frac{-24±\sqrt{576+44\left(-2\right)}}{2\left(-11\right)}
Multiply -4 times -11.
x=\frac{-24±\sqrt{576-88}}{2\left(-11\right)}
Multiply 44 times -2.
x=\frac{-24±\sqrt{488}}{2\left(-11\right)}
Add 576 to -88.
x=\frac{-24±2\sqrt{122}}{2\left(-11\right)}
Take the square root of 488.
x=\frac{-24±2\sqrt{122}}{-22}
Multiply 2 times -11.
x=\frac{2\sqrt{122}-24}{-22}
Now solve the equation x=\frac{-24±2\sqrt{122}}{-22} when ± is plus. Add -24 to 2\sqrt{122}.
x=\frac{12-\sqrt{122}}{11}
Divide -24+2\sqrt{122} by -22.
x=\frac{-2\sqrt{122}-24}{-22}
Now solve the equation x=\frac{-24±2\sqrt{122}}{-22} when ± is minus. Subtract 2\sqrt{122} from -24.
x=\frac{\sqrt{122}+12}{11}
Divide -24-2\sqrt{122} by -22.
x=\frac{12-\sqrt{122}}{11} x=\frac{\sqrt{122}+12}{11}
The equation is now solved.
\left(5x-4\right)\left(5x+4\right)=\left(6x-2\right)^{2}-18
Multiply both sides of the equation by 4.
\left(5x\right)^{2}-16=\left(6x-2\right)^{2}-18
Consider \left(5x-4\right)\left(5x+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
5^{2}x^{2}-16=\left(6x-2\right)^{2}-18
Expand \left(5x\right)^{2}.
25x^{2}-16=\left(6x-2\right)^{2}-18
Calculate 5 to the power of 2 and get 25.
25x^{2}-16=36x^{2}-24x+4-18
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-2\right)^{2}.
25x^{2}-16=36x^{2}-24x-14
Subtract 18 from 4 to get -14.
25x^{2}-16-36x^{2}=-24x-14
Subtract 36x^{2} from both sides.
-11x^{2}-16=-24x-14
Combine 25x^{2} and -36x^{2} to get -11x^{2}.
-11x^{2}-16+24x=-14
Add 24x to both sides.
-11x^{2}+24x=-14+16
Add 16 to both sides.
-11x^{2}+24x=2
Add -14 and 16 to get 2.
\frac{-11x^{2}+24x}{-11}=\frac{2}{-11}
Divide both sides by -11.
x^{2}+\frac{24}{-11}x=\frac{2}{-11}
Dividing by -11 undoes the multiplication by -11.
x^{2}-\frac{24}{11}x=\frac{2}{-11}
Divide 24 by -11.
x^{2}-\frac{24}{11}x=-\frac{2}{11}
Divide 2 by -11.
x^{2}-\frac{24}{11}x+\left(-\frac{12}{11}\right)^{2}=-\frac{2}{11}+\left(-\frac{12}{11}\right)^{2}
Divide -\frac{24}{11}, the coefficient of the x term, by 2 to get -\frac{12}{11}. Then add the square of -\frac{12}{11} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{24}{11}x+\frac{144}{121}=-\frac{2}{11}+\frac{144}{121}
Square -\frac{12}{11} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{24}{11}x+\frac{144}{121}=\frac{122}{121}
Add -\frac{2}{11} to \frac{144}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{12}{11}\right)^{2}=\frac{122}{121}
Factor x^{2}-\frac{24}{11}x+\frac{144}{121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{12}{11}\right)^{2}}=\sqrt{\frac{122}{121}}
Take the square root of both sides of the equation.
x-\frac{12}{11}=\frac{\sqrt{122}}{11} x-\frac{12}{11}=-\frac{\sqrt{122}}{11}
Simplify.
x=\frac{\sqrt{122}+12}{11} x=\frac{12-\sqrt{122}}{11}
Add \frac{12}{11} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}