Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\left(\frac{180+7}{36}-\frac{4\times 18+1}{18}+\frac{1\times 72+1}{72}\right)\times 36}{78-\frac{1}{2}}
Multiply 5 and 36 to get 180.
\frac{\left(\frac{187}{36}-\frac{4\times 18+1}{18}+\frac{1\times 72+1}{72}\right)\times 36}{78-\frac{1}{2}}
Add 180 and 7 to get 187.
\frac{\left(\frac{187}{36}-\frac{72+1}{18}+\frac{1\times 72+1}{72}\right)\times 36}{78-\frac{1}{2}}
Multiply 4 and 18 to get 72.
\frac{\left(\frac{187}{36}-\frac{73}{18}+\frac{1\times 72+1}{72}\right)\times 36}{78-\frac{1}{2}}
Add 72 and 1 to get 73.
\frac{\left(\frac{187}{36}-\frac{146}{36}+\frac{1\times 72+1}{72}\right)\times 36}{78-\frac{1}{2}}
Least common multiple of 36 and 18 is 36. Convert \frac{187}{36} and \frac{73}{18} to fractions with denominator 36.
\frac{\left(\frac{187-146}{36}+\frac{1\times 72+1}{72}\right)\times 36}{78-\frac{1}{2}}
Since \frac{187}{36} and \frac{146}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{41}{36}+\frac{1\times 72+1}{72}\right)\times 36}{78-\frac{1}{2}}
Subtract 146 from 187 to get 41.
\frac{\left(\frac{41}{36}+\frac{72+1}{72}\right)\times 36}{78-\frac{1}{2}}
Multiply 1 and 72 to get 72.
\frac{\left(\frac{41}{36}+\frac{73}{72}\right)\times 36}{78-\frac{1}{2}}
Add 72 and 1 to get 73.
\frac{\left(\frac{82}{72}+\frac{73}{72}\right)\times 36}{78-\frac{1}{2}}
Least common multiple of 36 and 72 is 72. Convert \frac{41}{36} and \frac{73}{72} to fractions with denominator 72.
\frac{\frac{82+73}{72}\times 36}{78-\frac{1}{2}}
Since \frac{82}{72} and \frac{73}{72} have the same denominator, add them by adding their numerators.
\frac{\frac{155}{72}\times 36}{78-\frac{1}{2}}
Add 82 and 73 to get 155.
\frac{\frac{155\times 36}{72}}{78-\frac{1}{2}}
Express \frac{155}{72}\times 36 as a single fraction.
\frac{\frac{5580}{72}}{78-\frac{1}{2}}
Multiply 155 and 36 to get 5580.
\frac{\frac{155}{2}}{78-\frac{1}{2}}
Reduce the fraction \frac{5580}{72} to lowest terms by extracting and canceling out 36.
\frac{\frac{155}{2}}{\frac{156}{2}-\frac{1}{2}}
Convert 78 to fraction \frac{156}{2}.
\frac{\frac{155}{2}}{\frac{156-1}{2}}
Since \frac{156}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{155}{2}}{\frac{155}{2}}
Subtract 1 from 156 to get 155.
1
Divide \frac{155}{2} by \frac{155}{2} to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}