Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5^{\frac{3}{2}}\times 2^{\frac{7}{2}}\right)^{2}\times 3^{\frac{5}{4}}}{2^{15}\times 3^{\frac{1}{4}}}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{8} and 2 to get \frac{1}{4}.
\frac{3\times \left(2^{\frac{7}{2}}\times 5^{\frac{3}{2}}\right)^{2}}{2^{15}}
Cancel out \sqrt[4]{3} in both numerator and denominator.
\frac{3\times \left(2^{\frac{7}{2}}\right)^{2}\times \left(5^{\frac{3}{2}}\right)^{2}}{2^{15}}
Expand \left(2^{\frac{7}{2}}\times 5^{\frac{3}{2}}\right)^{2}.
\frac{3\times 2^{7}\times \left(5^{\frac{3}{2}}\right)^{2}}{2^{15}}
To raise a power to another power, multiply the exponents. Multiply \frac{7}{2} and 2 to get 7.
\frac{3\times 2^{7}\times 5^{3}}{2^{15}}
To raise a power to another power, multiply the exponents. Multiply \frac{3}{2} and 2 to get 3.
\frac{3\times 128\times 5^{3}}{2^{15}}
Calculate 2 to the power of 7 and get 128.
\frac{3\times 128\times 125}{2^{15}}
Calculate 5 to the power of 3 and get 125.
\frac{3\times 16000}{2^{15}}
Multiply 128 and 125 to get 16000.
\frac{48000}{2^{15}}
Multiply 3 and 16000 to get 48000.
\frac{48000}{32768}
Calculate 2 to the power of 15 and get 32768.
\frac{375}{256}
Reduce the fraction \frac{48000}{32768} to lowest terms by extracting and canceling out 128.