Evaluate
\frac{375}{256}=1.46484375
Factor
\frac{3 \cdot 5 ^ {3}}{2 ^ {8}} = 1\frac{119}{256} = 1.46484375
Share
Copied to clipboard
\frac{\left(5^{\frac{3}{2}}\times 2^{\frac{7}{2}}\right)^{2}\times 3^{\frac{5}{4}}}{2^{15}\times 3^{\frac{1}{4}}}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{8} and 2 to get \frac{1}{4}.
\frac{3\times \left(2^{\frac{7}{2}}\times 5^{\frac{3}{2}}\right)^{2}}{2^{15}}
Cancel out \sqrt[4]{3} in both numerator and denominator.
\frac{3\times \left(2^{\frac{7}{2}}\right)^{2}\times \left(5^{\frac{3}{2}}\right)^{2}}{2^{15}}
Expand \left(2^{\frac{7}{2}}\times 5^{\frac{3}{2}}\right)^{2}.
\frac{3\times 2^{7}\times \left(5^{\frac{3}{2}}\right)^{2}}{2^{15}}
To raise a power to another power, multiply the exponents. Multiply \frac{7}{2} and 2 to get 7.
\frac{3\times 2^{7}\times 5^{3}}{2^{15}}
To raise a power to another power, multiply the exponents. Multiply \frac{3}{2} and 2 to get 3.
\frac{3\times 128\times 5^{3}}{2^{15}}
Calculate 2 to the power of 7 and get 128.
\frac{3\times 128\times 125}{2^{15}}
Calculate 5 to the power of 3 and get 125.
\frac{3\times 16000}{2^{15}}
Multiply 128 and 125 to get 16000.
\frac{48000}{2^{15}}
Multiply 3 and 16000 to get 48000.
\frac{48000}{32768}
Calculate 2 to the power of 15 and get 32768.
\frac{375}{256}
Reduce the fraction \frac{48000}{32768} to lowest terms by extracting and canceling out 128.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}