Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{1}{5}ab\right)^{-1}}{\left(10a^{-2}b^{3}\right)^{-2}}
Calculate 5 to the power of -1 and get \frac{1}{5}.
\frac{\left(\frac{1}{5}\right)^{-1}a^{-1}b^{-1}}{\left(10a^{-2}b^{3}\right)^{-2}}
Expand \left(\frac{1}{5}ab\right)^{-1}.
\frac{5a^{-1}b^{-1}}{\left(10a^{-2}b^{3}\right)^{-2}}
Calculate \frac{1}{5} to the power of -1 and get 5.
\frac{5a^{-1}b^{-1}}{10^{-2}\left(a^{-2}\right)^{-2}\left(b^{3}\right)^{-2}}
Expand \left(10a^{-2}b^{3}\right)^{-2}.
\frac{5a^{-1}b^{-1}}{10^{-2}a^{4}\left(b^{3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
\frac{5a^{-1}b^{-1}}{10^{-2}a^{4}b^{-6}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{5a^{-1}b^{-1}}{\frac{1}{100}a^{4}b^{-6}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{5\times \frac{1}{a}b^{5}}{\frac{1}{100}a^{4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{5b^{5}}{\frac{1}{100}a^{5}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(\frac{1}{5}ab\right)^{-1}}{\left(10a^{-2}b^{3}\right)^{-2}}
Calculate 5 to the power of -1 and get \frac{1}{5}.
\frac{\left(\frac{1}{5}\right)^{-1}a^{-1}b^{-1}}{\left(10a^{-2}b^{3}\right)^{-2}}
Expand \left(\frac{1}{5}ab\right)^{-1}.
\frac{5a^{-1}b^{-1}}{\left(10a^{-2}b^{3}\right)^{-2}}
Calculate \frac{1}{5} to the power of -1 and get 5.
\frac{5a^{-1}b^{-1}}{10^{-2}\left(a^{-2}\right)^{-2}\left(b^{3}\right)^{-2}}
Expand \left(10a^{-2}b^{3}\right)^{-2}.
\frac{5a^{-1}b^{-1}}{10^{-2}a^{4}\left(b^{3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
\frac{5a^{-1}b^{-1}}{10^{-2}a^{4}b^{-6}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{5a^{-1}b^{-1}}{\frac{1}{100}a^{4}b^{-6}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{5\times \frac{1}{a}b^{5}}{\frac{1}{100}a^{4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{5b^{5}}{\frac{1}{100}a^{5}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.