Evaluate
500\times \left(\frac{b}{a}\right)^{5}
Expand
500\times \left(\frac{b}{a}\right)^{5}
Share
Copied to clipboard
\frac{\left(\frac{1}{5}ab\right)^{-1}}{\left(10a^{-2}b^{3}\right)^{-2}}
Calculate 5 to the power of -1 and get \frac{1}{5}.
\frac{\left(\frac{1}{5}\right)^{-1}a^{-1}b^{-1}}{\left(10a^{-2}b^{3}\right)^{-2}}
Expand \left(\frac{1}{5}ab\right)^{-1}.
\frac{5a^{-1}b^{-1}}{\left(10a^{-2}b^{3}\right)^{-2}}
Calculate \frac{1}{5} to the power of -1 and get 5.
\frac{5a^{-1}b^{-1}}{10^{-2}\left(a^{-2}\right)^{-2}\left(b^{3}\right)^{-2}}
Expand \left(10a^{-2}b^{3}\right)^{-2}.
\frac{5a^{-1}b^{-1}}{10^{-2}a^{4}\left(b^{3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
\frac{5a^{-1}b^{-1}}{10^{-2}a^{4}b^{-6}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{5a^{-1}b^{-1}}{\frac{1}{100}a^{4}b^{-6}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{5\times \frac{1}{a}b^{5}}{\frac{1}{100}a^{4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{5b^{5}}{\frac{1}{100}a^{5}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(\frac{1}{5}ab\right)^{-1}}{\left(10a^{-2}b^{3}\right)^{-2}}
Calculate 5 to the power of -1 and get \frac{1}{5}.
\frac{\left(\frac{1}{5}\right)^{-1}a^{-1}b^{-1}}{\left(10a^{-2}b^{3}\right)^{-2}}
Expand \left(\frac{1}{5}ab\right)^{-1}.
\frac{5a^{-1}b^{-1}}{\left(10a^{-2}b^{3}\right)^{-2}}
Calculate \frac{1}{5} to the power of -1 and get 5.
\frac{5a^{-1}b^{-1}}{10^{-2}\left(a^{-2}\right)^{-2}\left(b^{3}\right)^{-2}}
Expand \left(10a^{-2}b^{3}\right)^{-2}.
\frac{5a^{-1}b^{-1}}{10^{-2}a^{4}\left(b^{3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
\frac{5a^{-1}b^{-1}}{10^{-2}a^{4}b^{-6}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{5a^{-1}b^{-1}}{\frac{1}{100}a^{4}b^{-6}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{5\times \frac{1}{a}b^{5}}{\frac{1}{100}a^{4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{5b^{5}}{\frac{1}{100}a^{5}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}