Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\times 7+5\times \left(-6i\right)+7i-6i^{2}}{3+i}
Multiply complex numbers 5+i and 7-6i like you multiply binomials.
\frac{5\times 7+5\times \left(-6i\right)+7i-6\left(-1\right)}{3+i}
By definition, i^{2} is -1.
\frac{35-30i+7i+6}{3+i}
Do the multiplications in 5\times 7+5\times \left(-6i\right)+7i-6\left(-1\right).
\frac{35+6+\left(-30+7\right)i}{3+i}
Combine the real and imaginary parts in 35-30i+7i+6.
\frac{41-23i}{3+i}
Do the additions in 35+6+\left(-30+7\right)i.
\frac{\left(41-23i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-i.
\frac{\left(41-23i\right)\left(3-i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(41-23i\right)\left(3-i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{41\times 3+41\left(-i\right)-23i\times 3-23\left(-1\right)i^{2}}{10}
Multiply complex numbers 41-23i and 3-i like you multiply binomials.
\frac{41\times 3+41\left(-i\right)-23i\times 3-23\left(-1\right)\left(-1\right)}{10}
By definition, i^{2} is -1.
\frac{123-41i-69i-23}{10}
Do the multiplications in 41\times 3+41\left(-i\right)-23i\times 3-23\left(-1\right)\left(-1\right).
\frac{123-23+\left(-41-69\right)i}{10}
Combine the real and imaginary parts in 123-41i-69i-23.
\frac{100-110i}{10}
Do the additions in 123-23+\left(-41-69\right)i.
10-11i
Divide 100-110i by 10 to get 10-11i.
Re(\frac{5\times 7+5\times \left(-6i\right)+7i-6i^{2}}{3+i})
Multiply complex numbers 5+i and 7-6i like you multiply binomials.
Re(\frac{5\times 7+5\times \left(-6i\right)+7i-6\left(-1\right)}{3+i})
By definition, i^{2} is -1.
Re(\frac{35-30i+7i+6}{3+i})
Do the multiplications in 5\times 7+5\times \left(-6i\right)+7i-6\left(-1\right).
Re(\frac{35+6+\left(-30+7\right)i}{3+i})
Combine the real and imaginary parts in 35-30i+7i+6.
Re(\frac{41-23i}{3+i})
Do the additions in 35+6+\left(-30+7\right)i.
Re(\frac{\left(41-23i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)})
Multiply both numerator and denominator of \frac{41-23i}{3+i} by the complex conjugate of the denominator, 3-i.
Re(\frac{\left(41-23i\right)\left(3-i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(41-23i\right)\left(3-i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{41\times 3+41\left(-i\right)-23i\times 3-23\left(-1\right)i^{2}}{10})
Multiply complex numbers 41-23i and 3-i like you multiply binomials.
Re(\frac{41\times 3+41\left(-i\right)-23i\times 3-23\left(-1\right)\left(-1\right)}{10})
By definition, i^{2} is -1.
Re(\frac{123-41i-69i-23}{10})
Do the multiplications in 41\times 3+41\left(-i\right)-23i\times 3-23\left(-1\right)\left(-1\right).
Re(\frac{123-23+\left(-41-69\right)i}{10})
Combine the real and imaginary parts in 123-41i-69i-23.
Re(\frac{100-110i}{10})
Do the additions in 123-23+\left(-41-69\right)i.
Re(10-11i)
Divide 100-110i by 10 to get 10-11i.
10
The real part of 10-11i is 10.