Solve for x
x=-\frac{530}{3y+1}
y\neq -\frac{1}{3}
Solve for y
y=-\frac{1}{3}-\frac{530}{3x}
x\neq 0
Graph
Share
Copied to clipboard
45-x-23\times 25=y\times 3x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x.
45-x-575=y\times 3x
Multiply 23 and 25 to get 575.
-530-x=y\times 3x
Subtract 575 from 45 to get -530.
-530-x-y\times 3x=0
Subtract y\times 3x from both sides.
-530-x-3yx=0
Multiply -1 and 3 to get -3.
-x-3yx=530
Add 530 to both sides. Anything plus zero gives itself.
\left(-1-3y\right)x=530
Combine all terms containing x.
\left(-3y-1\right)x=530
The equation is in standard form.
\frac{\left(-3y-1\right)x}{-3y-1}=\frac{530}{-3y-1}
Divide both sides by -1-3y.
x=\frac{530}{-3y-1}
Dividing by -1-3y undoes the multiplication by -1-3y.
x=-\frac{530}{3y+1}
Divide 530 by -1-3y.
x=-\frac{530}{3y+1}\text{, }x\neq 0
Variable x cannot be equal to 0.
45-x-23\times 25=y\times 3x
Multiply both sides of the equation by 3x.
45-x-575=y\times 3x
Multiply 23 and 25 to get 575.
-530-x=y\times 3x
Subtract 575 from 45 to get -530.
y\times 3x=-530-x
Swap sides so that all variable terms are on the left hand side.
3xy=-x-530
The equation is in standard form.
\frac{3xy}{3x}=\frac{-x-530}{3x}
Divide both sides by 3x.
y=\frac{-x-530}{3x}
Dividing by 3x undoes the multiplication by 3x.
y=-\frac{1}{3}-\frac{530}{3x}
Divide -530-x by 3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}