Evaluate
\frac{st^{6}}{32}
Expand
\frac{st^{6}}{32}
Share
Copied to clipboard
\frac{\left(4s^{3}t^{2}\right)^{2}\times \left(2s^{-3}t^{-4}\right)^{-2}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
Divide \frac{\left(4s^{3}t^{2}\right)^{2}}{8\left(s^{4}t\right)^{3}} by \frac{16s^{-1}t^{3}}{\left(2s^{-3}t^{-4}\right)^{-2}} by multiplying \frac{\left(4s^{3}t^{2}\right)^{2}}{8\left(s^{4}t\right)^{3}} by the reciprocal of \frac{16s^{-1}t^{3}}{\left(2s^{-3}t^{-4}\right)^{-2}}.
\frac{4^{2}\left(s^{3}\right)^{2}\left(t^{2}\right)^{2}\times \left(2s^{-3}t^{-4}\right)^{-2}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
Expand \left(4s^{3}t^{2}\right)^{2}.
\frac{4^{2}s^{6}\left(t^{2}\right)^{2}\times \left(2s^{-3}t^{-4}\right)^{-2}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{4^{2}s^{6}t^{4}\times \left(2s^{-3}t^{-4}\right)^{-2}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{16s^{6}t^{4}\times \left(2s^{-3}t^{-4}\right)^{-2}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
Calculate 4 to the power of 2 and get 16.
\frac{16s^{6}t^{4}\times 2^{-2}\left(s^{-3}\right)^{-2}\left(t^{-4}\right)^{-2}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
Expand \left(2s^{-3}t^{-4}\right)^{-2}.
\frac{16s^{6}t^{4}\times 2^{-2}s^{6}\left(t^{-4}\right)^{-2}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{16s^{6}t^{4}\times 2^{-2}s^{6}t^{8}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
To raise a power to another power, multiply the exponents. Multiply -4 and -2 to get 8.
\frac{16s^{6}t^{4}\times \frac{1}{4}s^{6}t^{8}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{4s^{6}t^{4}s^{6}t^{8}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
Multiply 16 and \frac{1}{4} to get 4.
\frac{4s^{12}t^{4}t^{8}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
To multiply powers of the same base, add their exponents. Add 6 and 6 to get 12.
\frac{4s^{12}t^{12}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
To multiply powers of the same base, add their exponents. Add 4 and 8 to get 12.
\frac{4s^{12}t^{12}}{8\left(s^{4}\right)^{3}t^{3}\times 16s^{-1}t^{3}}
Expand \left(s^{4}t\right)^{3}.
\frac{4s^{12}t^{12}}{8s^{12}t^{3}\times 16s^{-1}t^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{4s^{12}t^{12}}{128s^{12}t^{3}s^{-1}t^{3}}
Multiply 8 and 16 to get 128.
\frac{4s^{12}t^{12}}{128s^{11}t^{3}t^{3}}
To multiply powers of the same base, add their exponents. Add 12 and -1 to get 11.
\frac{4s^{12}t^{12}}{128s^{11}t^{6}}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
\frac{st^{6}}{32}
Cancel out 4t^{6}s^{11} in both numerator and denominator.
\frac{\left(4s^{3}t^{2}\right)^{2}\times \left(2s^{-3}t^{-4}\right)^{-2}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
Divide \frac{\left(4s^{3}t^{2}\right)^{2}}{8\left(s^{4}t\right)^{3}} by \frac{16s^{-1}t^{3}}{\left(2s^{-3}t^{-4}\right)^{-2}} by multiplying \frac{\left(4s^{3}t^{2}\right)^{2}}{8\left(s^{4}t\right)^{3}} by the reciprocal of \frac{16s^{-1}t^{3}}{\left(2s^{-3}t^{-4}\right)^{-2}}.
\frac{4^{2}\left(s^{3}\right)^{2}\left(t^{2}\right)^{2}\times \left(2s^{-3}t^{-4}\right)^{-2}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
Expand \left(4s^{3}t^{2}\right)^{2}.
\frac{4^{2}s^{6}\left(t^{2}\right)^{2}\times \left(2s^{-3}t^{-4}\right)^{-2}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{4^{2}s^{6}t^{4}\times \left(2s^{-3}t^{-4}\right)^{-2}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{16s^{6}t^{4}\times \left(2s^{-3}t^{-4}\right)^{-2}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
Calculate 4 to the power of 2 and get 16.
\frac{16s^{6}t^{4}\times 2^{-2}\left(s^{-3}\right)^{-2}\left(t^{-4}\right)^{-2}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
Expand \left(2s^{-3}t^{-4}\right)^{-2}.
\frac{16s^{6}t^{4}\times 2^{-2}s^{6}\left(t^{-4}\right)^{-2}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{16s^{6}t^{4}\times 2^{-2}s^{6}t^{8}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
To raise a power to another power, multiply the exponents. Multiply -4 and -2 to get 8.
\frac{16s^{6}t^{4}\times \frac{1}{4}s^{6}t^{8}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{4s^{6}t^{4}s^{6}t^{8}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
Multiply 16 and \frac{1}{4} to get 4.
\frac{4s^{12}t^{4}t^{8}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
To multiply powers of the same base, add their exponents. Add 6 and 6 to get 12.
\frac{4s^{12}t^{12}}{8\left(s^{4}t\right)^{3}\times 16s^{-1}t^{3}}
To multiply powers of the same base, add their exponents. Add 4 and 8 to get 12.
\frac{4s^{12}t^{12}}{8\left(s^{4}\right)^{3}t^{3}\times 16s^{-1}t^{3}}
Expand \left(s^{4}t\right)^{3}.
\frac{4s^{12}t^{12}}{8s^{12}t^{3}\times 16s^{-1}t^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{4s^{12}t^{12}}{128s^{12}t^{3}s^{-1}t^{3}}
Multiply 8 and 16 to get 128.
\frac{4s^{12}t^{12}}{128s^{11}t^{3}t^{3}}
To multiply powers of the same base, add their exponents. Add 12 and -1 to get 11.
\frac{4s^{12}t^{12}}{128s^{11}t^{6}}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
\frac{st^{6}}{32}
Cancel out 4t^{6}s^{11} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}