Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4-i\right)\left(5+i\right)}{\left(5-i\right)\left(5+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+i.
\frac{\left(4-i\right)\left(5+i\right)}{5^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-i\right)\left(5+i\right)}{26}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 5+4i-i\times 5-i^{2}}{26}
Multiply complex numbers 4-i and 5+i like you multiply binomials.
\frac{4\times 5+4i-i\times 5-\left(-1\right)}{26}
By definition, i^{2} is -1.
\frac{20+4i-5i+1}{26}
Do the multiplications in 4\times 5+4i-i\times 5-\left(-1\right).
\frac{20+1+\left(4-5\right)i}{26}
Combine the real and imaginary parts in 20+4i-5i+1.
\frac{21-i}{26}
Do the additions in 20+1+\left(4-5\right)i.
\frac{21}{26}-\frac{1}{26}i
Divide 21-i by 26 to get \frac{21}{26}-\frac{1}{26}i.
Re(\frac{\left(4-i\right)\left(5+i\right)}{\left(5-i\right)\left(5+i\right)})
Multiply both numerator and denominator of \frac{4-i}{5-i} by the complex conjugate of the denominator, 5+i.
Re(\frac{\left(4-i\right)\left(5+i\right)}{5^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4-i\right)\left(5+i\right)}{26})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 5+4i-i\times 5-i^{2}}{26})
Multiply complex numbers 4-i and 5+i like you multiply binomials.
Re(\frac{4\times 5+4i-i\times 5-\left(-1\right)}{26})
By definition, i^{2} is -1.
Re(\frac{20+4i-5i+1}{26})
Do the multiplications in 4\times 5+4i-i\times 5-\left(-1\right).
Re(\frac{20+1+\left(4-5\right)i}{26})
Combine the real and imaginary parts in 20+4i-5i+1.
Re(\frac{21-i}{26})
Do the additions in 20+1+\left(4-5\right)i.
Re(\frac{21}{26}-\frac{1}{26}i)
Divide 21-i by 26 to get \frac{21}{26}-\frac{1}{26}i.
\frac{21}{26}
The real part of \frac{21}{26}-\frac{1}{26}i is \frac{21}{26}.