Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\times 10+4\times \left(6i\right)-6i\times 10-6\times 6i^{2}}{4-6i+\left(10+6i\right)}
Multiply complex numbers 4-6i and 10+6i like you multiply binomials.
\frac{4\times 10+4\times \left(6i\right)-6i\times 10-6\times 6\left(-1\right)}{4-6i+\left(10+6i\right)}
By definition, i^{2} is -1.
\frac{40+24i-60i+36}{4-6i+\left(10+6i\right)}
Do the multiplications in 4\times 10+4\times \left(6i\right)-6i\times 10-6\times 6\left(-1\right).
\frac{40+36+\left(24-60\right)i}{4-6i+\left(10+6i\right)}
Combine the real and imaginary parts in 40+24i-60i+36.
\frac{76-36i}{4-6i+\left(10+6i\right)}
Do the additions in 40+36+\left(24-60\right)i.
\frac{76-36i}{4+10+\left(-6+6\right)i}
Combine the real and imaginary parts in numbers 4-6i and 10+6i.
\frac{76-36i}{14}
Add 4 to 10. Add -6 to 6.
\frac{38}{7}-\frac{18}{7}i
Divide 76-36i by 14 to get \frac{38}{7}-\frac{18}{7}i.
Re(\frac{4\times 10+4\times \left(6i\right)-6i\times 10-6\times 6i^{2}}{4-6i+\left(10+6i\right)})
Multiply complex numbers 4-6i and 10+6i like you multiply binomials.
Re(\frac{4\times 10+4\times \left(6i\right)-6i\times 10-6\times 6\left(-1\right)}{4-6i+\left(10+6i\right)})
By definition, i^{2} is -1.
Re(\frac{40+24i-60i+36}{4-6i+\left(10+6i\right)})
Do the multiplications in 4\times 10+4\times \left(6i\right)-6i\times 10-6\times 6\left(-1\right).
Re(\frac{40+36+\left(24-60\right)i}{4-6i+\left(10+6i\right)})
Combine the real and imaginary parts in 40+24i-60i+36.
Re(\frac{76-36i}{4-6i+\left(10+6i\right)})
Do the additions in 40+36+\left(24-60\right)i.
Re(\frac{76-36i}{4+10+\left(-6+6\right)i})
Combine the real and imaginary parts in numbers 4-6i and 10+6i.
Re(\frac{76-36i}{14})
Add 4 to 10. Add -6 to 6.
Re(\frac{38}{7}-\frac{18}{7}i)
Divide 76-36i by 14 to get \frac{38}{7}-\frac{18}{7}i.
\frac{38}{7}
The real part of \frac{38}{7}-\frac{18}{7}i is \frac{38}{7}.