Evaluate
\frac{12}{5}-\frac{24}{5}i=2.4-4.8i
Real Part
\frac{12}{5} = 2\frac{2}{5} = 2.4
Share
Copied to clipboard
\frac{4\times \left(3i\right)-4\times 3i^{2}}{-1+3i}
Multiply 4-4i times 3i.
\frac{4\times \left(3i\right)-4\times 3\left(-1\right)}{-1+3i}
By definition, i^{2} is -1.
\frac{12+12i}{-1+3i}
Do the multiplications in 4\times \left(3i\right)-4\times 3\left(-1\right). Reorder the terms.
\frac{\left(12+12i\right)\left(-1-3i\right)}{\left(-1+3i\right)\left(-1-3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -1-3i.
\frac{\left(12+12i\right)\left(-1-3i\right)}{\left(-1\right)^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(12+12i\right)\left(-1-3i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{12\left(-1\right)+12\times \left(-3i\right)+12i\left(-1\right)+12\left(-3\right)i^{2}}{10}
Multiply complex numbers 12+12i and -1-3i like you multiply binomials.
\frac{12\left(-1\right)+12\times \left(-3i\right)+12i\left(-1\right)+12\left(-3\right)\left(-1\right)}{10}
By definition, i^{2} is -1.
\frac{-12-36i-12i+36}{10}
Do the multiplications in 12\left(-1\right)+12\times \left(-3i\right)+12i\left(-1\right)+12\left(-3\right)\left(-1\right).
\frac{-12+36+\left(-36-12\right)i}{10}
Combine the real and imaginary parts in -12-36i-12i+36.
\frac{24-48i}{10}
Do the additions in -12+36+\left(-36-12\right)i.
\frac{12}{5}-\frac{24}{5}i
Divide 24-48i by 10 to get \frac{12}{5}-\frac{24}{5}i.
Re(\frac{4\times \left(3i\right)-4\times 3i^{2}}{-1+3i})
Multiply 4-4i times 3i.
Re(\frac{4\times \left(3i\right)-4\times 3\left(-1\right)}{-1+3i})
By definition, i^{2} is -1.
Re(\frac{12+12i}{-1+3i})
Do the multiplications in 4\times \left(3i\right)-4\times 3\left(-1\right). Reorder the terms.
Re(\frac{\left(12+12i\right)\left(-1-3i\right)}{\left(-1+3i\right)\left(-1-3i\right)})
Multiply both numerator and denominator of \frac{12+12i}{-1+3i} by the complex conjugate of the denominator, -1-3i.
Re(\frac{\left(12+12i\right)\left(-1-3i\right)}{\left(-1\right)^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(12+12i\right)\left(-1-3i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{12\left(-1\right)+12\times \left(-3i\right)+12i\left(-1\right)+12\left(-3\right)i^{2}}{10})
Multiply complex numbers 12+12i and -1-3i like you multiply binomials.
Re(\frac{12\left(-1\right)+12\times \left(-3i\right)+12i\left(-1\right)+12\left(-3\right)\left(-1\right)}{10})
By definition, i^{2} is -1.
Re(\frac{-12-36i-12i+36}{10})
Do the multiplications in 12\left(-1\right)+12\times \left(-3i\right)+12i\left(-1\right)+12\left(-3\right)\left(-1\right).
Re(\frac{-12+36+\left(-36-12\right)i}{10})
Combine the real and imaginary parts in -12-36i-12i+36.
Re(\frac{24-48i}{10})
Do the additions in -12+36+\left(-36-12\right)i.
Re(\frac{12}{5}-\frac{24}{5}i)
Divide 24-48i by 10 to get \frac{12}{5}-\frac{24}{5}i.
\frac{12}{5}
The real part of \frac{12}{5}-\frac{24}{5}i is \frac{12}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}