Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4^{2}-\left(\sqrt{5}\right)^{2}}{2\sqrt{11}}
Consider \left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{16-\left(\sqrt{5}\right)^{2}}{2\sqrt{11}}
Calculate 4 to the power of 2 and get 16.
\frac{16-5}{2\sqrt{11}}
The square of \sqrt{5} is 5.
\frac{11}{2\sqrt{11}}
Subtract 5 from 16 to get 11.
\frac{11\sqrt{11}}{2\left(\sqrt{11}\right)^{2}}
Rationalize the denominator of \frac{11}{2\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{11\sqrt{11}}{2\times 11}
The square of \sqrt{11} is 11.
\frac{\sqrt{11}}{2}
Cancel out 11 in both numerator and denominator.