Evaluate
\frac{\sqrt{11}}{2}\approx 1.658312395
Share
Copied to clipboard
\frac{4^{2}-\left(\sqrt{5}\right)^{2}}{2\sqrt{11}}
Consider \left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{16-\left(\sqrt{5}\right)^{2}}{2\sqrt{11}}
Calculate 4 to the power of 2 and get 16.
\frac{16-5}{2\sqrt{11}}
The square of \sqrt{5} is 5.
\frac{11}{2\sqrt{11}}
Subtract 5 from 16 to get 11.
\frac{11\sqrt{11}}{2\left(\sqrt{11}\right)^{2}}
Rationalize the denominator of \frac{11}{2\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{11\sqrt{11}}{2\times 11}
The square of \sqrt{11} is 11.
\frac{\sqrt{11}}{2}
Cancel out 11 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}