Evaluate
3.5
Factor
\frac{7}{2} = 3\frac{1}{2} = 3.5
Share
Copied to clipboard
\frac{\left(\frac{4\times 3+2}{3}+0.75\right)\times \frac{3\times 13+9}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Divide \frac{\left(\frac{4\times 3+2}{3}+0.75\right)\times \frac{3\times 13+9}{13}}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}} by \frac{34\times 7+2}{7} by multiplying \frac{\left(\frac{4\times 3+2}{3}+0.75\right)\times \frac{3\times 13+9}{13}}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}} by the reciprocal of \frac{34\times 7+2}{7}.
\frac{\left(\frac{12+2}{3}+0.75\right)\times \frac{3\times 13+9}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Multiply 4 and 3 to get 12.
\frac{\left(\frac{14}{3}+0.75\right)\times \frac{3\times 13+9}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Add 12 and 2 to get 14.
\frac{\left(\frac{14}{3}+\frac{3}{4}\right)\times \frac{3\times 13+9}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Convert decimal number 0.75 to fraction \frac{75}{100}. Reduce the fraction \frac{75}{100} to lowest terms by extracting and canceling out 25.
\frac{\left(\frac{56}{12}+\frac{9}{12}\right)\times \frac{3\times 13+9}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Least common multiple of 3 and 4 is 12. Convert \frac{14}{3} and \frac{3}{4} to fractions with denominator 12.
\frac{\frac{56+9}{12}\times \frac{3\times 13+9}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Since \frac{56}{12} and \frac{9}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{65}{12}\times \frac{3\times 13+9}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Add 56 and 9 to get 65.
\frac{\frac{65}{12}\times \frac{39+9}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Multiply 3 and 13 to get 39.
\frac{\frac{65}{12}\times \frac{48}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Add 39 and 9 to get 48.
\frac{\frac{65\times 48}{12\times 13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Multiply \frac{65}{12} times \frac{48}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3120}{156}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Do the multiplications in the fraction \frac{65\times 48}{12\times 13}.
\frac{20\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Divide 3120 by 156 to get 20.
\frac{140}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Multiply 20 and 7 to get 140.
\frac{140}{\frac{\frac{225+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Multiply 5 and 45 to get 225.
\frac{140}{\frac{\frac{229}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Add 225 and 4 to get 229.
\frac{140}{\frac{\frac{229}{45}-\frac{24+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Multiply 4 and 6 to get 24.
\frac{140}{\frac{\frac{229}{45}-\frac{25}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Add 24 and 1 to get 25.
\frac{140}{\frac{\frac{458}{90}-\frac{375}{90}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Least common multiple of 45 and 6 is 90. Convert \frac{229}{45} and \frac{25}{6} to fractions with denominator 90.
\frac{140}{\frac{\frac{458-375}{90}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Since \frac{458}{90} and \frac{375}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{140}{\frac{\frac{83}{90}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Subtract 375 from 458 to get 83.
\frac{140}{\frac{\frac{83}{90}}{\frac{75+8}{15}}\left(34\times 7+2\right)}
Multiply 5 and 15 to get 75.
\frac{140}{\frac{\frac{83}{90}}{\frac{83}{15}}\left(34\times 7+2\right)}
Add 75 and 8 to get 83.
\frac{140}{\frac{83}{90}\times \frac{15}{83}\left(34\times 7+2\right)}
Divide \frac{83}{90} by \frac{83}{15} by multiplying \frac{83}{90} by the reciprocal of \frac{83}{15}.
\frac{140}{\frac{83\times 15}{90\times 83}\left(34\times 7+2\right)}
Multiply \frac{83}{90} times \frac{15}{83} by multiplying numerator times numerator and denominator times denominator.
\frac{140}{\frac{15}{90}\left(34\times 7+2\right)}
Cancel out 83 in both numerator and denominator.
\frac{140}{\frac{1}{6}\left(34\times 7+2\right)}
Reduce the fraction \frac{15}{90} to lowest terms by extracting and canceling out 15.
\frac{140}{\frac{1}{6}\left(238+2\right)}
Multiply 34 and 7 to get 238.
\frac{140}{\frac{1}{6}\times 240}
Add 238 and 2 to get 240.
\frac{140}{\frac{240}{6}}
Multiply \frac{1}{6} and 240 to get \frac{240}{6}.
\frac{140}{40}
Divide 240 by 6 to get 40.
\frac{7}{2}
Reduce the fraction \frac{140}{40} to lowest terms by extracting and canceling out 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}