Skip to main content
Solve for x
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{33^{28}}{3^{3}}=3^{5x}
To raise a power to another power, multiply the exponents. Multiply 7 and 4 to get 28.
\frac{3299060778251569566188233498374847942355841}{3^{3}}=3^{5x}
Calculate 33 to the power of 28 and get 3299060778251569566188233498374847942355841.
\frac{3299060778251569566188233498374847942355841}{27}=3^{5x}
Calculate 3 to the power of 3 and get 27.
122187436231539613562527166606475849716883=3^{5x}
Divide 3299060778251569566188233498374847942355841 by 27 to get 122187436231539613562527166606475849716883.
3^{5x}=122187436231539613562527166606475849716883
Swap sides so that all variable terms are on the left hand side.
\log(3^{5x})=\log(122187436231539613562527166606475849716883)
Take the logarithm of both sides of the equation.
5x\log(3)=\log(122187436231539613562527166606475849716883)
The logarithm of a number raised to a power is the power times the logarithm of the number.
5x=\frac{\log(122187436231539613562527166606475849716883)}{\log(3)}
Divide both sides by \log(3).
5x=\log_{3}\left(122187436231539613562527166606475849716883\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\log_{3}\left(122187436231539613562527166606475849716883\right)}{5}
Divide both sides by 5.