Evaluate
81y^{3}-\frac{79}{y^{3}}
Expand
81y^{3}-\frac{79}{y^{3}}
Graph
Share
Copied to clipboard
\frac{\left(3y^{5}\right)^{4}}{y^{15}\left(y^{-2}\right)^{-1}}-\frac{\left(4y^{2}\right)^{3}}{\left(y^{-3}\right)^{-3}}-15\left(y^{3}\right)^{-1}
To raise a power to another power, multiply the exponents. Multiply -5 and -3 to get 15.
\frac{\left(3y^{5}\right)^{4}}{y^{15}y^{2}}-\frac{\left(4y^{2}\right)^{3}}{\left(y^{-3}\right)^{-3}}-15\left(y^{3}\right)^{-1}
To raise a power to another power, multiply the exponents. Multiply -2 and -1 to get 2.
\frac{\left(3y^{5}\right)^{4}}{y^{17}}-\frac{\left(4y^{2}\right)^{3}}{\left(y^{-3}\right)^{-3}}-15\left(y^{3}\right)^{-1}
To multiply powers of the same base, add their exponents. Add 15 and 2 to get 17.
\frac{\left(3y^{5}\right)^{4}}{y^{17}}-\frac{\left(4y^{2}\right)^{3}}{y^{9}}-15\left(y^{3}\right)^{-1}
To raise a power to another power, multiply the exponents. Multiply -3 and -3 to get 9.
\frac{\left(3y^{5}\right)^{4}}{y^{17}}-\frac{\left(4y^{2}\right)^{3}}{y^{9}}-15y^{-3}
To raise a power to another power, multiply the exponents. Multiply 3 and -1 to get -3.
\frac{3^{4}\left(y^{5}\right)^{4}}{y^{17}}-\frac{\left(4y^{2}\right)^{3}}{y^{9}}-15y^{-3}
Expand \left(3y^{5}\right)^{4}.
\frac{3^{4}y^{20}}{y^{17}}-\frac{\left(4y^{2}\right)^{3}}{y^{9}}-15y^{-3}
To raise a power to another power, multiply the exponents. Multiply 5 and 4 to get 20.
\frac{81y^{20}}{y^{17}}-\frac{\left(4y^{2}\right)^{3}}{y^{9}}-15y^{-3}
Calculate 3 to the power of 4 and get 81.
81y^{3}-\frac{\left(4y^{2}\right)^{3}}{y^{9}}-15y^{-3}
Cancel out y^{17} in both numerator and denominator.
81y^{3}-\frac{4^{3}\left(y^{2}\right)^{3}}{y^{9}}-15y^{-3}
Expand \left(4y^{2}\right)^{3}.
81y^{3}-\frac{4^{3}y^{6}}{y^{9}}-15y^{-3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
81y^{3}-\frac{64y^{6}}{y^{9}}-15y^{-3}
Calculate 4 to the power of 3 and get 64.
81y^{3}-\frac{64}{y^{3}}-15y^{-3}
Cancel out y^{6} in both numerator and denominator.
\frac{81y^{3}y^{3}}{y^{3}}-\frac{64}{y^{3}}-15y^{-3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 81y^{3} times \frac{y^{3}}{y^{3}}.
\frac{81y^{3}y^{3}-64}{y^{3}}-15y^{-3}
Since \frac{81y^{3}y^{3}}{y^{3}} and \frac{64}{y^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{81y^{6}-64}{y^{3}}-15y^{-3}
Do the multiplications in 81y^{3}y^{3}-64.
\frac{81y^{6}-64}{y^{3}}+\frac{-15y^{-3}y^{3}}{y^{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -15y^{-3} times \frac{y^{3}}{y^{3}}.
\frac{81y^{6}-64-15y^{-3}y^{3}}{y^{3}}
Since \frac{81y^{6}-64}{y^{3}} and \frac{-15y^{-3}y^{3}}{y^{3}} have the same denominator, add them by adding their numerators.
\frac{81y^{6}-64-15}{y^{3}}
Do the multiplications in 81y^{6}-64-15y^{-3}y^{3}.
\frac{81y^{6}-79}{y^{3}}
Combine like terms in 81y^{6}-64-15.
\frac{\left(3y^{5}\right)^{4}}{y^{15}\left(y^{-2}\right)^{-1}}-\frac{\left(4y^{2}\right)^{3}}{\left(y^{-3}\right)^{-3}}-15\left(y^{3}\right)^{-1}
To raise a power to another power, multiply the exponents. Multiply -5 and -3 to get 15.
\frac{\left(3y^{5}\right)^{4}}{y^{15}y^{2}}-\frac{\left(4y^{2}\right)^{3}}{\left(y^{-3}\right)^{-3}}-15\left(y^{3}\right)^{-1}
To raise a power to another power, multiply the exponents. Multiply -2 and -1 to get 2.
\frac{\left(3y^{5}\right)^{4}}{y^{17}}-\frac{\left(4y^{2}\right)^{3}}{\left(y^{-3}\right)^{-3}}-15\left(y^{3}\right)^{-1}
To multiply powers of the same base, add their exponents. Add 15 and 2 to get 17.
\frac{\left(3y^{5}\right)^{4}}{y^{17}}-\frac{\left(4y^{2}\right)^{3}}{y^{9}}-15\left(y^{3}\right)^{-1}
To raise a power to another power, multiply the exponents. Multiply -3 and -3 to get 9.
\frac{\left(3y^{5}\right)^{4}}{y^{17}}-\frac{\left(4y^{2}\right)^{3}}{y^{9}}-15y^{-3}
To raise a power to another power, multiply the exponents. Multiply 3 and -1 to get -3.
\frac{3^{4}\left(y^{5}\right)^{4}}{y^{17}}-\frac{\left(4y^{2}\right)^{3}}{y^{9}}-15y^{-3}
Expand \left(3y^{5}\right)^{4}.
\frac{3^{4}y^{20}}{y^{17}}-\frac{\left(4y^{2}\right)^{3}}{y^{9}}-15y^{-3}
To raise a power to another power, multiply the exponents. Multiply 5 and 4 to get 20.
\frac{81y^{20}}{y^{17}}-\frac{\left(4y^{2}\right)^{3}}{y^{9}}-15y^{-3}
Calculate 3 to the power of 4 and get 81.
81y^{3}-\frac{\left(4y^{2}\right)^{3}}{y^{9}}-15y^{-3}
Cancel out y^{17} in both numerator and denominator.
81y^{3}-\frac{4^{3}\left(y^{2}\right)^{3}}{y^{9}}-15y^{-3}
Expand \left(4y^{2}\right)^{3}.
81y^{3}-\frac{4^{3}y^{6}}{y^{9}}-15y^{-3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
81y^{3}-\frac{64y^{6}}{y^{9}}-15y^{-3}
Calculate 4 to the power of 3 and get 64.
81y^{3}-\frac{64}{y^{3}}-15y^{-3}
Cancel out y^{6} in both numerator and denominator.
\frac{81y^{3}y^{3}}{y^{3}}-\frac{64}{y^{3}}-15y^{-3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 81y^{3} times \frac{y^{3}}{y^{3}}.
\frac{81y^{3}y^{3}-64}{y^{3}}-15y^{-3}
Since \frac{81y^{3}y^{3}}{y^{3}} and \frac{64}{y^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{81y^{6}-64}{y^{3}}-15y^{-3}
Do the multiplications in 81y^{3}y^{3}-64.
\frac{81y^{6}-64}{y^{3}}+\frac{-15y^{-3}y^{3}}{y^{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -15y^{-3} times \frac{y^{3}}{y^{3}}.
\frac{81y^{6}-64-15y^{-3}y^{3}}{y^{3}}
Since \frac{81y^{6}-64}{y^{3}} and \frac{-15y^{-3}y^{3}}{y^{3}} have the same denominator, add them by adding their numerators.
\frac{81y^{6}-64-15}{y^{3}}
Do the multiplications in 81y^{6}-64-15y^{-3}y^{3}.
\frac{81y^{6}-79}{y^{3}}
Combine like terms in 81y^{6}-64-15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}