Evaluate
\frac{12}{y^{5}}
Differentiate w.r.t. y
-\frac{60}{y^{6}}
Graph
Share
Copied to clipboard
\frac{3y^{3}\times \left(2y^{2}\right)^{2}}{y^{12}}\left(y^{3}\right)^{0}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{3y^{3}\times \left(2y^{2}\right)^{2}}{y^{12}}y^{0}
To raise a power to another power, multiply the exponents. Multiply 3 and 0 to get 0.
\frac{3\times \left(2y^{2}\right)^{2}}{y^{9}}y^{0}
Cancel out y^{3} in both numerator and denominator.
\frac{3\times 2^{2}\left(y^{2}\right)^{2}}{y^{9}}y^{0}
Expand \left(2y^{2}\right)^{2}.
\frac{3\times 2^{2}y^{4}}{y^{9}}y^{0}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{3\times 4y^{4}}{y^{9}}y^{0}
Calculate 2 to the power of 2 and get 4.
\frac{12y^{4}}{y^{9}}y^{0}
Multiply 3 and 4 to get 12.
\frac{12}{y^{5}}y^{0}
Cancel out y^{4} in both numerator and denominator.
\frac{12}{y^{5}}\times 1
Calculate y to the power of 0 and get 1.
\frac{12}{y^{5}}
Express \frac{12}{y^{5}}\times 1 as a single fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}