Evaluate
\frac{1}{6y^{10}}
Expand
\frac{1}{6y^{10}}
Share
Copied to clipboard
\frac{3^{3}x^{3}\left(y^{2}\right)^{3}\times \left(2x^{2}y\right)^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Expand \left(3xy^{2}\right)^{3}.
\frac{3^{3}x^{3}y^{6}\times \left(2x^{2}y\right)^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{27x^{3}y^{6}\times \left(2x^{2}y\right)^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Calculate 3 to the power of 3 and get 27.
\frac{27x^{3}y^{6}\times 2^{3}\left(x^{2}\right)^{3}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Expand \left(2x^{2}y\right)^{3}.
\frac{27x^{3}y^{6}\times 2^{3}x^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{27x^{3}y^{6}\times 8x^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Calculate 2 to the power of 3 and get 8.
\frac{216x^{3}y^{6}x^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Multiply 27 and 8 to get 216.
\frac{216x^{9}y^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
\frac{216x^{9}y^{9}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To multiply powers of the same base, add their exponents. Add 6 and 3 to get 9.
\frac{216x^{9}y^{9}}{6^{4}x^{4}y^{4}\left(xy^{3}\right)^{5}}
Expand \left(6xy\right)^{4}.
\frac{216x^{9}y^{9}}{1296x^{4}y^{4}\left(xy^{3}\right)^{5}}
Calculate 6 to the power of 4 and get 1296.
\frac{216x^{9}y^{9}}{1296x^{4}y^{4}x^{5}\left(y^{3}\right)^{5}}
Expand \left(xy^{3}\right)^{5}.
\frac{216x^{9}y^{9}}{1296x^{4}y^{4}x^{5}y^{15}}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\frac{216x^{9}y^{9}}{1296x^{9}y^{4}y^{15}}
To multiply powers of the same base, add their exponents. Add 4 and 5 to get 9.
\frac{216x^{9}y^{9}}{1296x^{9}y^{19}}
To multiply powers of the same base, add their exponents. Add 4 and 15 to get 19.
\frac{1}{6y^{10}}
Cancel out 216x^{9}y^{9} in both numerator and denominator.
\frac{3^{3}x^{3}\left(y^{2}\right)^{3}\times \left(2x^{2}y\right)^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Expand \left(3xy^{2}\right)^{3}.
\frac{3^{3}x^{3}y^{6}\times \left(2x^{2}y\right)^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{27x^{3}y^{6}\times \left(2x^{2}y\right)^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Calculate 3 to the power of 3 and get 27.
\frac{27x^{3}y^{6}\times 2^{3}\left(x^{2}\right)^{3}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Expand \left(2x^{2}y\right)^{3}.
\frac{27x^{3}y^{6}\times 2^{3}x^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{27x^{3}y^{6}\times 8x^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Calculate 2 to the power of 3 and get 8.
\frac{216x^{3}y^{6}x^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Multiply 27 and 8 to get 216.
\frac{216x^{9}y^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
\frac{216x^{9}y^{9}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To multiply powers of the same base, add their exponents. Add 6 and 3 to get 9.
\frac{216x^{9}y^{9}}{6^{4}x^{4}y^{4}\left(xy^{3}\right)^{5}}
Expand \left(6xy\right)^{4}.
\frac{216x^{9}y^{9}}{1296x^{4}y^{4}\left(xy^{3}\right)^{5}}
Calculate 6 to the power of 4 and get 1296.
\frac{216x^{9}y^{9}}{1296x^{4}y^{4}x^{5}\left(y^{3}\right)^{5}}
Expand \left(xy^{3}\right)^{5}.
\frac{216x^{9}y^{9}}{1296x^{4}y^{4}x^{5}y^{15}}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\frac{216x^{9}y^{9}}{1296x^{9}y^{4}y^{15}}
To multiply powers of the same base, add their exponents. Add 4 and 5 to get 9.
\frac{216x^{9}y^{9}}{1296x^{9}y^{19}}
To multiply powers of the same base, add their exponents. Add 4 and 15 to get 19.
\frac{1}{6y^{10}}
Cancel out 216x^{9}y^{9} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}