Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3^{3}x^{3}\left(y^{2}\right)^{3}\times \left(2x^{2}y\right)^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Expand \left(3xy^{2}\right)^{3}.
\frac{3^{3}x^{3}y^{6}\times \left(2x^{2}y\right)^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{27x^{3}y^{6}\times \left(2x^{2}y\right)^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Calculate 3 to the power of 3 and get 27.
\frac{27x^{3}y^{6}\times 2^{3}\left(x^{2}\right)^{3}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Expand \left(2x^{2}y\right)^{3}.
\frac{27x^{3}y^{6}\times 2^{3}x^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{27x^{3}y^{6}\times 8x^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Calculate 2 to the power of 3 and get 8.
\frac{216x^{3}y^{6}x^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Multiply 27 and 8 to get 216.
\frac{216x^{9}y^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
\frac{216x^{9}y^{9}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To multiply powers of the same base, add their exponents. Add 6 and 3 to get 9.
\frac{216x^{9}y^{9}}{6^{4}x^{4}y^{4}\left(xy^{3}\right)^{5}}
Expand \left(6xy\right)^{4}.
\frac{216x^{9}y^{9}}{1296x^{4}y^{4}\left(xy^{3}\right)^{5}}
Calculate 6 to the power of 4 and get 1296.
\frac{216x^{9}y^{9}}{1296x^{4}y^{4}x^{5}\left(y^{3}\right)^{5}}
Expand \left(xy^{3}\right)^{5}.
\frac{216x^{9}y^{9}}{1296x^{4}y^{4}x^{5}y^{15}}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\frac{216x^{9}y^{9}}{1296x^{9}y^{4}y^{15}}
To multiply powers of the same base, add their exponents. Add 4 and 5 to get 9.
\frac{216x^{9}y^{9}}{1296x^{9}y^{19}}
To multiply powers of the same base, add their exponents. Add 4 and 15 to get 19.
\frac{1}{6y^{10}}
Cancel out 216x^{9}y^{9} in both numerator and denominator.
\frac{3^{3}x^{3}\left(y^{2}\right)^{3}\times \left(2x^{2}y\right)^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Expand \left(3xy^{2}\right)^{3}.
\frac{3^{3}x^{3}y^{6}\times \left(2x^{2}y\right)^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{27x^{3}y^{6}\times \left(2x^{2}y\right)^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Calculate 3 to the power of 3 and get 27.
\frac{27x^{3}y^{6}\times 2^{3}\left(x^{2}\right)^{3}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Expand \left(2x^{2}y\right)^{3}.
\frac{27x^{3}y^{6}\times 2^{3}x^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{27x^{3}y^{6}\times 8x^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Calculate 2 to the power of 3 and get 8.
\frac{216x^{3}y^{6}x^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
Multiply 27 and 8 to get 216.
\frac{216x^{9}y^{6}y^{3}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
\frac{216x^{9}y^{9}}{\left(6xy\right)^{4}\left(xy^{3}\right)^{5}}
To multiply powers of the same base, add their exponents. Add 6 and 3 to get 9.
\frac{216x^{9}y^{9}}{6^{4}x^{4}y^{4}\left(xy^{3}\right)^{5}}
Expand \left(6xy\right)^{4}.
\frac{216x^{9}y^{9}}{1296x^{4}y^{4}\left(xy^{3}\right)^{5}}
Calculate 6 to the power of 4 and get 1296.
\frac{216x^{9}y^{9}}{1296x^{4}y^{4}x^{5}\left(y^{3}\right)^{5}}
Expand \left(xy^{3}\right)^{5}.
\frac{216x^{9}y^{9}}{1296x^{4}y^{4}x^{5}y^{15}}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\frac{216x^{9}y^{9}}{1296x^{9}y^{4}y^{15}}
To multiply powers of the same base, add their exponents. Add 4 and 5 to get 9.
\frac{216x^{9}y^{9}}{1296x^{9}y^{19}}
To multiply powers of the same base, add their exponents. Add 4 and 15 to get 19.
\frac{1}{6y^{10}}
Cancel out 216x^{9}y^{9} in both numerator and denominator.