Evaluate
\frac{9}{100y}
Differentiate w.r.t. y
-\frac{9}{100y^{2}}
Share
Copied to clipboard
\frac{\left(3x\right)^{3}y^{2}\times \left(27x^{9}y^{9}\right)^{\frac{1}{3}}}{\left(6x^{2}y^{2}\right)^{2}\times \left(5xy\right)^{2}}
Divide \frac{\left(3x\right)^{3}y^{2}}{\left(6x^{2}y^{2}\right)^{2}} by \frac{\left(5xy\right)^{2}}{\left(27x^{9}y^{9}\right)^{\frac{1}{3}}} by multiplying \frac{\left(3x\right)^{3}y^{2}}{\left(6x^{2}y^{2}\right)^{2}} by the reciprocal of \frac{\left(5xy\right)^{2}}{\left(27x^{9}y^{9}\right)^{\frac{1}{3}}}.
\frac{3^{3}x^{3}y^{2}\times \left(27x^{9}y^{9}\right)^{\frac{1}{3}}}{\left(6x^{2}y^{2}\right)^{2}\times \left(5xy\right)^{2}}
Expand \left(3x\right)^{3}.
\frac{27x^{3}y^{2}\times \left(27x^{9}y^{9}\right)^{\frac{1}{3}}}{\left(6x^{2}y^{2}\right)^{2}\times \left(5xy\right)^{2}}
Calculate 3 to the power of 3 and get 27.
\frac{27x^{3}y^{2}\times 27^{\frac{1}{3}}\left(x^{9}\right)^{\frac{1}{3}}\left(y^{9}\right)^{\frac{1}{3}}}{\left(6x^{2}y^{2}\right)^{2}\times \left(5xy\right)^{2}}
Expand \left(27x^{9}y^{9}\right)^{\frac{1}{3}}.
\frac{27x^{3}y^{2}\times 27^{\frac{1}{3}}x^{3}\left(y^{9}\right)^{\frac{1}{3}}}{\left(6x^{2}y^{2}\right)^{2}\times \left(5xy\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 9 and \frac{1}{3} to get 3.
\frac{27x^{3}y^{2}\times 27^{\frac{1}{3}}x^{3}y^{3}}{\left(6x^{2}y^{2}\right)^{2}\times \left(5xy\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 9 and \frac{1}{3} to get 3.
\frac{27x^{3}y^{2}\times 3x^{3}y^{3}}{\left(6x^{2}y^{2}\right)^{2}\times \left(5xy\right)^{2}}
Calculate 27 to the power of \frac{1}{3} and get 3.
\frac{81x^{3}y^{2}x^{3}y^{3}}{\left(6x^{2}y^{2}\right)^{2}\times \left(5xy\right)^{2}}
Multiply 27 and 3 to get 81.
\frac{81x^{6}y^{2}y^{3}}{\left(6x^{2}y^{2}\right)^{2}\times \left(5xy\right)^{2}}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
\frac{81x^{6}y^{5}}{\left(6x^{2}y^{2}\right)^{2}\times \left(5xy\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{81x^{6}y^{5}}{6^{2}\left(x^{2}\right)^{2}\left(y^{2}\right)^{2}\times \left(5xy\right)^{2}}
Expand \left(6x^{2}y^{2}\right)^{2}.
\frac{81x^{6}y^{5}}{6^{2}x^{4}\left(y^{2}\right)^{2}\times \left(5xy\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{81x^{6}y^{5}}{6^{2}x^{4}y^{4}\times \left(5xy\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{81x^{6}y^{5}}{36x^{4}y^{4}\times \left(5xy\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{81x^{6}y^{5}}{36x^{4}y^{4}\times 5^{2}x^{2}y^{2}}
Expand \left(5xy\right)^{2}.
\frac{81x^{6}y^{5}}{36x^{4}y^{4}\times 25x^{2}y^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{81x^{6}y^{5}}{900x^{4}y^{4}x^{2}y^{2}}
Multiply 36 and 25 to get 900.
\frac{81x^{6}y^{5}}{900x^{6}y^{4}y^{2}}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{81x^{6}y^{5}}{900x^{6}y^{6}}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{9}{100y}
Cancel out 9y^{5}x^{6} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}