Solve for n
n\neq 0
y=-\frac{203x}{200}\text{ and }x\neq 0
Solve for x
x=-\frac{200y}{203}
y\neq 0\text{ and }n\neq 0
Graph
Share
Copied to clipboard
100\left(3x+2y\right)n=97nx
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 100nx, the least common multiple of xn,100.
\left(300x+200y\right)n=97nx
Use the distributive property to multiply 100 by 3x+2y.
300xn+200yn=97nx
Use the distributive property to multiply 300x+200y by n.
300xn+200yn-97nx=0
Subtract 97nx from both sides.
203xn+200yn=0
Combine 300xn and -97nx to get 203xn.
\left(203x+200y\right)n=0
Combine all terms containing n.
n=0
Divide 0 by 203x+200y.
n\in \emptyset
Variable n cannot be equal to 0.
100\left(3x+2y\right)n=97nx
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 100nx, the least common multiple of xn,100.
\left(300x+200y\right)n=97nx
Use the distributive property to multiply 100 by 3x+2y.
300xn+200yn=97nx
Use the distributive property to multiply 300x+200y by n.
300xn+200yn-97nx=0
Subtract 97nx from both sides.
203xn+200yn=0
Combine 300xn and -97nx to get 203xn.
203xn=-200yn
Subtract 200yn from both sides. Anything subtracted from zero gives its negation.
203nx=-200ny
The equation is in standard form.
\frac{203nx}{203n}=-\frac{200ny}{203n}
Divide both sides by 203n.
x=-\frac{200ny}{203n}
Dividing by 203n undoes the multiplication by 203n.
x=-\frac{200y}{203}
Divide -200yn by 203n.
x=-\frac{200y}{203}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}