Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(3x+1\right)\left(3x-1\right)-9\left(x+2\right)^{2}\leq 2\times 3x\left(\frac{1}{3}-\frac{1}{2}\right)^{-1}
Multiply both sides of the equation by 4, the least common multiple of 4,2. Since 4 is positive, the inequality direction remains the same.
\left(3x\right)^{2}-1-9\left(x+2\right)^{2}\leq 2\times 3x\left(\frac{1}{3}-\frac{1}{2}\right)^{-1}
Consider \left(3x+1\right)\left(3x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
3^{2}x^{2}-1-9\left(x+2\right)^{2}\leq 2\times 3x\left(\frac{1}{3}-\frac{1}{2}\right)^{-1}
Expand \left(3x\right)^{2}.
9x^{2}-1-9\left(x+2\right)^{2}\leq 2\times 3x\left(\frac{1}{3}-\frac{1}{2}\right)^{-1}
Calculate 3 to the power of 2 and get 9.
9x^{2}-1-9\left(x^{2}+4x+4\right)\leq 2\times 3x\left(\frac{1}{3}-\frac{1}{2}\right)^{-1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
9x^{2}-1-9x^{2}-36x-36\leq 2\times 3x\left(\frac{1}{3}-\frac{1}{2}\right)^{-1}
Use the distributive property to multiply -9 by x^{2}+4x+4.
-1-36x-36\leq 2\times 3x\left(\frac{1}{3}-\frac{1}{2}\right)^{-1}
Combine 9x^{2} and -9x^{2} to get 0.
-37-36x\leq 2\times 3x\left(\frac{1}{3}-\frac{1}{2}\right)^{-1}
Subtract 36 from -1 to get -37.
-37-36x\leq 6x\left(\frac{1}{3}-\frac{1}{2}\right)^{-1}
Multiply 2 and 3 to get 6.
-37-36x\leq 6x\left(-\frac{1}{6}\right)^{-1}
Subtract \frac{1}{2} from \frac{1}{3} to get -\frac{1}{6}.
-37-36x\leq 6x\left(-6\right)
Calculate -\frac{1}{6} to the power of -1 and get -6.
-37-36x\leq -36x
Multiply 6 and -6 to get -36.
-37-36x+36x\leq 0
Add 36x to both sides.
-37\leq 0
Combine -36x and 36x to get 0.
x\in \mathrm{R}
This is true for any x.