Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3x+\frac{\pi }{4}-\left(\frac{6\times 3x}{6}-\frac{\pi }{6}\right)}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x times \frac{6}{6}.
\frac{3x+\frac{\pi }{4}-\frac{6\times 3x-\pi }{6}}{3}
Since \frac{6\times 3x}{6} and \frac{\pi }{6} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+\frac{\pi }{4}-\frac{18x-\pi }{6}}{3}
Do the multiplications in 6\times 3x-\pi .
\frac{\frac{4\times 3x}{4}+\frac{\pi }{4}-\frac{18x-\pi }{6}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x times \frac{4}{4}.
\frac{\frac{4\times 3x+\pi }{4}-\frac{18x-\pi }{6}}{3}
Since \frac{4\times 3x}{4} and \frac{\pi }{4} have the same denominator, add them by adding their numerators.
\frac{\frac{12x+\pi }{4}-\frac{18x-\pi }{6}}{3}
Do the multiplications in 4\times 3x+\pi .
\frac{\frac{3\left(12x+\pi \right)}{12}-\frac{2\left(18x-\pi \right)}{12}}{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 6 is 12. Multiply \frac{12x+\pi }{4} times \frac{3}{3}. Multiply \frac{18x-\pi }{6} times \frac{2}{2}.
\frac{\frac{3\left(12x+\pi \right)-2\left(18x-\pi \right)}{12}}{3}
Since \frac{3\left(12x+\pi \right)}{12} and \frac{2\left(18x-\pi \right)}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{36x+3\pi -36x+2\pi }{12}}{3}
Do the multiplications in 3\left(12x+\pi \right)-2\left(18x-\pi \right).
\frac{\frac{5\pi }{12}}{3}
Combine like terms in 36x+3\pi -36x+2\pi .
\frac{5\pi }{12\times 3}
Express \frac{\frac{5\pi }{12}}{3} as a single fraction.
\frac{5\pi }{36}
Multiply 12 and 3 to get 36.
\frac{3x+\frac{\pi }{4}-\left(\frac{6\times 3x}{6}-\frac{\pi }{6}\right)}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x times \frac{6}{6}.
\frac{3x+\frac{\pi }{4}-\frac{6\times 3x-\pi }{6}}{3}
Since \frac{6\times 3x}{6} and \frac{\pi }{6} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+\frac{\pi }{4}-\frac{18x-\pi }{6}}{3}
Do the multiplications in 6\times 3x-\pi .
\frac{\frac{4\times 3x}{4}+\frac{\pi }{4}-\frac{18x-\pi }{6}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x times \frac{4}{4}.
\frac{\frac{4\times 3x+\pi }{4}-\frac{18x-\pi }{6}}{3}
Since \frac{4\times 3x}{4} and \frac{\pi }{4} have the same denominator, add them by adding their numerators.
\frac{\frac{12x+\pi }{4}-\frac{18x-\pi }{6}}{3}
Do the multiplications in 4\times 3x+\pi .
\frac{\frac{3\left(12x+\pi \right)}{12}-\frac{2\left(18x-\pi \right)}{12}}{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 6 is 12. Multiply \frac{12x+\pi }{4} times \frac{3}{3}. Multiply \frac{18x-\pi }{6} times \frac{2}{2}.
\frac{\frac{3\left(12x+\pi \right)-2\left(18x-\pi \right)}{12}}{3}
Since \frac{3\left(12x+\pi \right)}{12} and \frac{2\left(18x-\pi \right)}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{36x+3\pi -36x+2\pi }{12}}{3}
Do the multiplications in 3\left(12x+\pi \right)-2\left(18x-\pi \right).
\frac{\frac{5\pi }{12}}{3}
Combine like terms in 36x+3\pi -36x+2\pi .
\frac{5\pi }{12\times 3}
Express \frac{\frac{5\pi }{12}}{3} as a single fraction.
\frac{5\pi }{36}
Multiply 12 and 3 to get 36.