Solve for k
k = \frac{\sqrt{265} - 5}{6} \approx 1.879803433
k=\frac{-\sqrt{265}-5}{6}\approx -3.546470099
Quiz
Quadratic Equation
5 problems similar to:
\frac { ( 3 k ^ { 2 } - k ) + 2 ( 3 k + 1 ) } { 2 } = 11
Share
Copied to clipboard
3k^{2}-k+2\left(3k+1\right)=11\times 2
Multiply both sides by 2.
3k^{2}-k+6k+2=11\times 2
Use the distributive property to multiply 2 by 3k+1.
3k^{2}+5k+2=11\times 2
Combine -k and 6k to get 5k.
3k^{2}+5k+2=22
Multiply 11 and 2 to get 22.
3k^{2}+5k+2-22=0
Subtract 22 from both sides.
3k^{2}+5k-20=0
Subtract 22 from 2 to get -20.
k=\frac{-5±\sqrt{5^{2}-4\times 3\left(-20\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 5 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-5±\sqrt{25-4\times 3\left(-20\right)}}{2\times 3}
Square 5.
k=\frac{-5±\sqrt{25-12\left(-20\right)}}{2\times 3}
Multiply -4 times 3.
k=\frac{-5±\sqrt{25+240}}{2\times 3}
Multiply -12 times -20.
k=\frac{-5±\sqrt{265}}{2\times 3}
Add 25 to 240.
k=\frac{-5±\sqrt{265}}{6}
Multiply 2 times 3.
k=\frac{\sqrt{265}-5}{6}
Now solve the equation k=\frac{-5±\sqrt{265}}{6} when ± is plus. Add -5 to \sqrt{265}.
k=\frac{-\sqrt{265}-5}{6}
Now solve the equation k=\frac{-5±\sqrt{265}}{6} when ± is minus. Subtract \sqrt{265} from -5.
k=\frac{\sqrt{265}-5}{6} k=\frac{-\sqrt{265}-5}{6}
The equation is now solved.
3k^{2}-k+2\left(3k+1\right)=11\times 2
Multiply both sides by 2.
3k^{2}-k+6k+2=11\times 2
Use the distributive property to multiply 2 by 3k+1.
3k^{2}+5k+2=11\times 2
Combine -k and 6k to get 5k.
3k^{2}+5k+2=22
Multiply 11 and 2 to get 22.
3k^{2}+5k=22-2
Subtract 2 from both sides.
3k^{2}+5k=20
Subtract 2 from 22 to get 20.
\frac{3k^{2}+5k}{3}=\frac{20}{3}
Divide both sides by 3.
k^{2}+\frac{5}{3}k=\frac{20}{3}
Dividing by 3 undoes the multiplication by 3.
k^{2}+\frac{5}{3}k+\left(\frac{5}{6}\right)^{2}=\frac{20}{3}+\left(\frac{5}{6}\right)^{2}
Divide \frac{5}{3}, the coefficient of the x term, by 2 to get \frac{5}{6}. Then add the square of \frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+\frac{5}{3}k+\frac{25}{36}=\frac{20}{3}+\frac{25}{36}
Square \frac{5}{6} by squaring both the numerator and the denominator of the fraction.
k^{2}+\frac{5}{3}k+\frac{25}{36}=\frac{265}{36}
Add \frac{20}{3} to \frac{25}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(k+\frac{5}{6}\right)^{2}=\frac{265}{36}
Factor k^{2}+\frac{5}{3}k+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{5}{6}\right)^{2}}=\sqrt{\frac{265}{36}}
Take the square root of both sides of the equation.
k+\frac{5}{6}=\frac{\sqrt{265}}{6} k+\frac{5}{6}=-\frac{\sqrt{265}}{6}
Simplify.
k=\frac{\sqrt{265}-5}{6} k=\frac{-\sqrt{265}-5}{6}
Subtract \frac{5}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}