Evaluate
18a^{10}b^{13}
Expand
18a^{10}b^{13}
Share
Copied to clipboard
\frac{3^{4}\left(a^{3}\right)^{4}b^{4}}{\left(2a^{2}\right)^{2}}\times \frac{\left(2ab^{4}\right)^{3}}{9ab^{3}}
Expand \left(3a^{3}b\right)^{4}.
\frac{3^{4}a^{12}b^{4}}{\left(2a^{2}\right)^{2}}\times \frac{\left(2ab^{4}\right)^{3}}{9ab^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{81a^{12}b^{4}}{\left(2a^{2}\right)^{2}}\times \frac{\left(2ab^{4}\right)^{3}}{9ab^{3}}
Calculate 3 to the power of 4 and get 81.
\frac{81a^{12}b^{4}}{2^{2}\left(a^{2}\right)^{2}}\times \frac{\left(2ab^{4}\right)^{3}}{9ab^{3}}
Expand \left(2a^{2}\right)^{2}.
\frac{81a^{12}b^{4}}{2^{2}a^{4}}\times \frac{\left(2ab^{4}\right)^{3}}{9ab^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{81a^{12}b^{4}}{4a^{4}}\times \frac{\left(2ab^{4}\right)^{3}}{9ab^{3}}
Calculate 2 to the power of 2 and get 4.
\frac{81b^{4}a^{8}}{4}\times \frac{\left(2ab^{4}\right)^{3}}{9ab^{3}}
Cancel out a^{4} in both numerator and denominator.
\frac{81b^{4}a^{8}}{4}\times \frac{2^{3}a^{3}\left(b^{4}\right)^{3}}{9ab^{3}}
Expand \left(2ab^{4}\right)^{3}.
\frac{81b^{4}a^{8}}{4}\times \frac{2^{3}a^{3}b^{12}}{9ab^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{81b^{4}a^{8}}{4}\times \frac{8a^{3}b^{12}}{9ab^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{81b^{4}a^{8}}{4}\times \frac{8a^{2}b^{9}}{9}
Cancel out ab^{3} in both numerator and denominator.
\frac{81b^{4}a^{8}\times 8a^{2}b^{9}}{4\times 9}
Multiply \frac{81b^{4}a^{8}}{4} times \frac{8a^{2}b^{9}}{9} by multiplying numerator times numerator and denominator times denominator.
2\times 9a^{2}b^{4}a^{8}b^{9}
Cancel out 4\times 9 in both numerator and denominator.
2\times 9a^{10}b^{4}b^{9}
To multiply powers of the same base, add their exponents. Add 2 and 8 to get 10.
2\times 9a^{10}b^{13}
To multiply powers of the same base, add their exponents. Add 4 and 9 to get 13.
18a^{10}b^{13}
Multiply 2 and 9 to get 18.
\frac{3^{4}\left(a^{3}\right)^{4}b^{4}}{\left(2a^{2}\right)^{2}}\times \frac{\left(2ab^{4}\right)^{3}}{9ab^{3}}
Expand \left(3a^{3}b\right)^{4}.
\frac{3^{4}a^{12}b^{4}}{\left(2a^{2}\right)^{2}}\times \frac{\left(2ab^{4}\right)^{3}}{9ab^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{81a^{12}b^{4}}{\left(2a^{2}\right)^{2}}\times \frac{\left(2ab^{4}\right)^{3}}{9ab^{3}}
Calculate 3 to the power of 4 and get 81.
\frac{81a^{12}b^{4}}{2^{2}\left(a^{2}\right)^{2}}\times \frac{\left(2ab^{4}\right)^{3}}{9ab^{3}}
Expand \left(2a^{2}\right)^{2}.
\frac{81a^{12}b^{4}}{2^{2}a^{4}}\times \frac{\left(2ab^{4}\right)^{3}}{9ab^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{81a^{12}b^{4}}{4a^{4}}\times \frac{\left(2ab^{4}\right)^{3}}{9ab^{3}}
Calculate 2 to the power of 2 and get 4.
\frac{81b^{4}a^{8}}{4}\times \frac{\left(2ab^{4}\right)^{3}}{9ab^{3}}
Cancel out a^{4} in both numerator and denominator.
\frac{81b^{4}a^{8}}{4}\times \frac{2^{3}a^{3}\left(b^{4}\right)^{3}}{9ab^{3}}
Expand \left(2ab^{4}\right)^{3}.
\frac{81b^{4}a^{8}}{4}\times \frac{2^{3}a^{3}b^{12}}{9ab^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{81b^{4}a^{8}}{4}\times \frac{8a^{3}b^{12}}{9ab^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{81b^{4}a^{8}}{4}\times \frac{8a^{2}b^{9}}{9}
Cancel out ab^{3} in both numerator and denominator.
\frac{81b^{4}a^{8}\times 8a^{2}b^{9}}{4\times 9}
Multiply \frac{81b^{4}a^{8}}{4} times \frac{8a^{2}b^{9}}{9} by multiplying numerator times numerator and denominator times denominator.
2\times 9a^{2}b^{4}a^{8}b^{9}
Cancel out 4\times 9 in both numerator and denominator.
2\times 9a^{10}b^{4}b^{9}
To multiply powers of the same base, add their exponents. Add 2 and 8 to get 10.
2\times 9a^{10}b^{13}
To multiply powers of the same base, add their exponents. Add 4 and 9 to get 13.
18a^{10}b^{13}
Multiply 2 and 9 to get 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}