Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3^{2}\left(a^{-4}\right)^{2}\left(b^{-9}\right)^{2}\left(c^{4}\right)^{2}}{\left(3^{-1}a^{3}b^{6}c^{-2}\right)^{-3}}
Expand \left(3a^{-4}b^{-9}c^{4}\right)^{2}.
\frac{3^{2}a^{-8}\left(b^{-9}\right)^{2}\left(c^{4}\right)^{2}}{\left(3^{-1}a^{3}b^{6}c^{-2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -4 and 2 to get -8.
\frac{3^{2}a^{-8}b^{-18}\left(c^{4}\right)^{2}}{\left(3^{-1}a^{3}b^{6}c^{-2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -9 and 2 to get -18.
\frac{3^{2}a^{-8}b^{-18}c^{8}}{\left(3^{-1}a^{3}b^{6}c^{-2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{9a^{-8}b^{-18}c^{8}}{\left(3^{-1}a^{3}b^{6}c^{-2}\right)^{-3}}
Calculate 3 to the power of 2 and get 9.
\frac{9a^{-8}b^{-18}c^{8}}{\left(\frac{1}{3}a^{3}b^{6}c^{-2}\right)^{-3}}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{9a^{-8}b^{-18}c^{8}}{\left(\frac{1}{3}\right)^{-3}\left(a^{3}\right)^{-3}\left(b^{6}\right)^{-3}\left(c^{-2}\right)^{-3}}
Expand \left(\frac{1}{3}a^{3}b^{6}c^{-2}\right)^{-3}.
\frac{9a^{-8}b^{-18}c^{8}}{\left(\frac{1}{3}\right)^{-3}a^{-9}\left(b^{6}\right)^{-3}\left(c^{-2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -3 to get -9.
\frac{9a^{-8}b^{-18}c^{8}}{\left(\frac{1}{3}\right)^{-3}a^{-9}b^{-18}\left(c^{-2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 6 and -3 to get -18.
\frac{9a^{-8}b^{-18}c^{8}}{\left(\frac{1}{3}\right)^{-3}a^{-9}b^{-18}c^{6}}
To raise a power to another power, multiply the exponents. Multiply -2 and -3 to get 6.
\frac{9a^{-8}b^{-18}c^{8}}{27a^{-9}b^{-18}c^{6}}
Calculate \frac{1}{3} to the power of -3 and get 27.
\frac{a^{-8}c^{2}}{3a^{-9}}
Cancel out 9b^{-18}c^{6} in both numerator and denominator.
\frac{a^{1}c^{2}}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{ac^{2}}{3}
Calculate a to the power of 1 and get a.
\frac{3^{2}\left(a^{-4}\right)^{2}\left(b^{-9}\right)^{2}\left(c^{4}\right)^{2}}{\left(3^{-1}a^{3}b^{6}c^{-2}\right)^{-3}}
Expand \left(3a^{-4}b^{-9}c^{4}\right)^{2}.
\frac{3^{2}a^{-8}\left(b^{-9}\right)^{2}\left(c^{4}\right)^{2}}{\left(3^{-1}a^{3}b^{6}c^{-2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -4 and 2 to get -8.
\frac{3^{2}a^{-8}b^{-18}\left(c^{4}\right)^{2}}{\left(3^{-1}a^{3}b^{6}c^{-2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -9 and 2 to get -18.
\frac{3^{2}a^{-8}b^{-18}c^{8}}{\left(3^{-1}a^{3}b^{6}c^{-2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{9a^{-8}b^{-18}c^{8}}{\left(3^{-1}a^{3}b^{6}c^{-2}\right)^{-3}}
Calculate 3 to the power of 2 and get 9.
\frac{9a^{-8}b^{-18}c^{8}}{\left(\frac{1}{3}a^{3}b^{6}c^{-2}\right)^{-3}}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{9a^{-8}b^{-18}c^{8}}{\left(\frac{1}{3}\right)^{-3}\left(a^{3}\right)^{-3}\left(b^{6}\right)^{-3}\left(c^{-2}\right)^{-3}}
Expand \left(\frac{1}{3}a^{3}b^{6}c^{-2}\right)^{-3}.
\frac{9a^{-8}b^{-18}c^{8}}{\left(\frac{1}{3}\right)^{-3}a^{-9}\left(b^{6}\right)^{-3}\left(c^{-2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -3 to get -9.
\frac{9a^{-8}b^{-18}c^{8}}{\left(\frac{1}{3}\right)^{-3}a^{-9}b^{-18}\left(c^{-2}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 6 and -3 to get -18.
\frac{9a^{-8}b^{-18}c^{8}}{\left(\frac{1}{3}\right)^{-3}a^{-9}b^{-18}c^{6}}
To raise a power to another power, multiply the exponents. Multiply -2 and -3 to get 6.
\frac{9a^{-8}b^{-18}c^{8}}{27a^{-9}b^{-18}c^{6}}
Calculate \frac{1}{3} to the power of -3 and get 27.
\frac{a^{-8}c^{2}}{3a^{-9}}
Cancel out 9b^{-18}c^{6} in both numerator and denominator.
\frac{a^{1}c^{2}}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{ac^{2}}{3}
Calculate a to the power of 1 and get a.