Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(3-x\right)\left(x-1\right)}{x-1}+\frac{1}{x-1}}{1-\left(3-x\right)\times \frac{1}{x-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3-x times \frac{x-1}{x-1}.
\frac{\frac{\left(3-x\right)\left(x-1\right)+1}{x-1}}{1-\left(3-x\right)\times \frac{1}{x-1}}
Since \frac{\left(3-x\right)\left(x-1\right)}{x-1} and \frac{1}{x-1} have the same denominator, add them by adding their numerators.
\frac{\frac{3x-3-x^{2}+x+1}{x-1}}{1-\left(3-x\right)\times \frac{1}{x-1}}
Do the multiplications in \left(3-x\right)\left(x-1\right)+1.
\frac{\frac{4x-2-x^{2}}{x-1}}{1-\left(3-x\right)\times \frac{1}{x-1}}
Combine like terms in 3x-3-x^{2}+x+1.
\frac{\frac{4x-2-x^{2}}{x-1}}{1-\frac{3-x}{x-1}}
Express \left(3-x\right)\times \frac{1}{x-1} as a single fraction.
\frac{\frac{4x-2-x^{2}}{x-1}}{\frac{x-1}{x-1}-\frac{3-x}{x-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-1}{x-1}.
\frac{\frac{4x-2-x^{2}}{x-1}}{\frac{x-1-\left(3-x\right)}{x-1}}
Since \frac{x-1}{x-1} and \frac{3-x}{x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4x-2-x^{2}}{x-1}}{\frac{x-1-3+x}{x-1}}
Do the multiplications in x-1-\left(3-x\right).
\frac{\frac{4x-2-x^{2}}{x-1}}{\frac{2x-4}{x-1}}
Combine like terms in x-1-3+x.
\frac{\left(4x-2-x^{2}\right)\left(x-1\right)}{\left(x-1\right)\left(2x-4\right)}
Divide \frac{4x-2-x^{2}}{x-1} by \frac{2x-4}{x-1} by multiplying \frac{4x-2-x^{2}}{x-1} by the reciprocal of \frac{2x-4}{x-1}.
\frac{-x^{2}+4x-2}{2x-4}
Cancel out x-1 in both numerator and denominator.
\frac{\frac{\left(3-x\right)\left(x-1\right)}{x-1}+\frac{1}{x-1}}{1-\left(3-x\right)\times \frac{1}{x-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3-x times \frac{x-1}{x-1}.
\frac{\frac{\left(3-x\right)\left(x-1\right)+1}{x-1}}{1-\left(3-x\right)\times \frac{1}{x-1}}
Since \frac{\left(3-x\right)\left(x-1\right)}{x-1} and \frac{1}{x-1} have the same denominator, add them by adding their numerators.
\frac{\frac{3x-3-x^{2}+x+1}{x-1}}{1-\left(3-x\right)\times \frac{1}{x-1}}
Do the multiplications in \left(3-x\right)\left(x-1\right)+1.
\frac{\frac{4x-2-x^{2}}{x-1}}{1-\left(3-x\right)\times \frac{1}{x-1}}
Combine like terms in 3x-3-x^{2}+x+1.
\frac{\frac{4x-2-x^{2}}{x-1}}{1-\frac{3-x}{x-1}}
Express \left(3-x\right)\times \frac{1}{x-1} as a single fraction.
\frac{\frac{4x-2-x^{2}}{x-1}}{\frac{x-1}{x-1}-\frac{3-x}{x-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-1}{x-1}.
\frac{\frac{4x-2-x^{2}}{x-1}}{\frac{x-1-\left(3-x\right)}{x-1}}
Since \frac{x-1}{x-1} and \frac{3-x}{x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4x-2-x^{2}}{x-1}}{\frac{x-1-3+x}{x-1}}
Do the multiplications in x-1-\left(3-x\right).
\frac{\frac{4x-2-x^{2}}{x-1}}{\frac{2x-4}{x-1}}
Combine like terms in x-1-3+x.
\frac{\left(4x-2-x^{2}\right)\left(x-1\right)}{\left(x-1\right)\left(2x-4\right)}
Divide \frac{4x-2-x^{2}}{x-1} by \frac{2x-4}{x-1} by multiplying \frac{4x-2-x^{2}}{x-1} by the reciprocal of \frac{2x-4}{x-1}.
\frac{-x^{2}+4x-2}{2x-4}
Cancel out x-1 in both numerator and denominator.