Evaluate
1-i
Real Part
1
Share
Copied to clipboard
\frac{\left(3-i\right)\left(-i\right)}{1-2i}
Calculate i to the power of 3 and get -i.
\frac{-1-3i}{1-2i}
Multiply 3-i and -i to get -1-3i.
\frac{\left(-1-3i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+2i.
\frac{5-5i}{5}
Do the multiplications in \frac{\left(-1-3i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}.
1-i
Divide 5-5i by 5 to get 1-i.
Re(\frac{\left(3-i\right)\left(-i\right)}{1-2i})
Calculate i to the power of 3 and get -i.
Re(\frac{-1-3i}{1-2i})
Multiply 3-i and -i to get -1-3i.
Re(\frac{\left(-1-3i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)})
Multiply both numerator and denominator of \frac{-1-3i}{1-2i} by the complex conjugate of the denominator, 1+2i.
Re(\frac{5-5i}{5})
Do the multiplications in \frac{\left(-1-3i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}.
Re(1-i)
Divide 5-5i by 5 to get 1-i.
1
The real part of 1-i is 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}