Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-i\right)\left(-i\right)}{1-2i}
Calculate i to the power of 3 and get -i.
\frac{-1-3i}{1-2i}
Multiply 3-i and -i to get -1-3i.
\frac{\left(-1-3i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+2i.
\frac{5-5i}{5}
Do the multiplications in \frac{\left(-1-3i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}.
1-i
Divide 5-5i by 5 to get 1-i.
Re(\frac{\left(3-i\right)\left(-i\right)}{1-2i})
Calculate i to the power of 3 and get -i.
Re(\frac{-1-3i}{1-2i})
Multiply 3-i and -i to get -1-3i.
Re(\frac{\left(-1-3i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)})
Multiply both numerator and denominator of \frac{-1-3i}{1-2i} by the complex conjugate of the denominator, 1+2i.
Re(\frac{5-5i}{5})
Do the multiplications in \frac{\left(-1-3i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}.
Re(1-i)
Divide 5-5i by 5 to get 1-i.
1
The real part of 1-i is 1.