\frac { ( 3 - i ) ( 2 - ( 1 i ) } { ( 2 + u i ) ( 2 - u i ) }
Evaluate
\frac{5-5i}{u^{2}+4}
Expand
\frac{5-5i}{u^{2}+4}
Share
Copied to clipboard
\frac{3\times 2+3\left(-i\right)-i\times 2-\left(-i^{2}\right)}{\left(2+ui\right)\left(2-ui\right)}
Multiply complex numbers 3-i and 2-i like you multiply binomials.
\frac{3\times 2+3\left(-i\right)-i\times 2-\left(-\left(-1\right)\right)}{\left(2+ui\right)\left(2-ui\right)}
By definition, i^{2} is -1.
\frac{6-3i-2i-1}{\left(2+ui\right)\left(2-ui\right)}
Do the multiplications in 3\times 2+3\left(-i\right)-i\times 2-\left(-\left(-1\right)\right).
\frac{6-1+\left(-3-2\right)i}{\left(2+ui\right)\left(2-ui\right)}
Combine the real and imaginary parts in 6-3i-2i-1.
\frac{5-5i}{\left(2+ui\right)\left(2-ui\right)}
Do the additions in 6-1+\left(-3-2\right)i.
\frac{5-5i}{2^{2}-\left(ui\right)^{2}}
Consider \left(2+ui\right)\left(2-ui\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5-5i}{4-\left(ui\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{5-5i}{4-u^{2}i^{2}}
Expand \left(ui\right)^{2}.
\frac{5-5i}{4-u^{2}\left(-1\right)}
Calculate i to the power of 2 and get -1.
\frac{5-5i}{4+u^{2}}
Multiply -1 and -1 to get 1.
\frac{3\times 2+3\left(-i\right)-i\times 2-\left(-i^{2}\right)}{\left(2+ui\right)\left(2-ui\right)}
Multiply complex numbers 3-i and 2-i like you multiply binomials.
\frac{3\times 2+3\left(-i\right)-i\times 2-\left(-\left(-1\right)\right)}{\left(2+ui\right)\left(2-ui\right)}
By definition, i^{2} is -1.
\frac{6-3i-2i-1}{\left(2+ui\right)\left(2-ui\right)}
Do the multiplications in 3\times 2+3\left(-i\right)-i\times 2-\left(-\left(-1\right)\right).
\frac{6-1+\left(-3-2\right)i}{\left(2+ui\right)\left(2-ui\right)}
Combine the real and imaginary parts in 6-3i-2i-1.
\frac{5-5i}{\left(2+ui\right)\left(2-ui\right)}
Do the additions in 6-1+\left(-3-2\right)i.
\frac{5-5i}{2^{2}-\left(ui\right)^{2}}
Consider \left(2+ui\right)\left(2-ui\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5-5i}{4-\left(ui\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{5-5i}{4-u^{2}i^{2}}
Expand \left(ui\right)^{2}.
\frac{5-5i}{4-u^{2}\left(-1\right)}
Calculate i to the power of 2 and get -1.
\frac{5-5i}{4+u^{2}}
Multiply -1 and -1 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}