Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\times 2+3\left(-i\right)-i\times 2-\left(-i^{2}\right)}{\left(2+ui\right)\left(2-ui\right)}
Multiply complex numbers 3-i and 2-i like you multiply binomials.
\frac{3\times 2+3\left(-i\right)-i\times 2-\left(-\left(-1\right)\right)}{\left(2+ui\right)\left(2-ui\right)}
By definition, i^{2} is -1.
\frac{6-3i-2i-1}{\left(2+ui\right)\left(2-ui\right)}
Do the multiplications in 3\times 2+3\left(-i\right)-i\times 2-\left(-\left(-1\right)\right).
\frac{6-1+\left(-3-2\right)i}{\left(2+ui\right)\left(2-ui\right)}
Combine the real and imaginary parts in 6-3i-2i-1.
\frac{5-5i}{\left(2+ui\right)\left(2-ui\right)}
Do the additions in 6-1+\left(-3-2\right)i.
\frac{5-5i}{2^{2}-\left(ui\right)^{2}}
Consider \left(2+ui\right)\left(2-ui\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5-5i}{4-\left(ui\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{5-5i}{4-u^{2}i^{2}}
Expand \left(ui\right)^{2}.
\frac{5-5i}{4-u^{2}\left(-1\right)}
Calculate i to the power of 2 and get -1.
\frac{5-5i}{4+u^{2}}
Multiply -1 and -1 to get 1.
\frac{3\times 2+3\left(-i\right)-i\times 2-\left(-i^{2}\right)}{\left(2+ui\right)\left(2-ui\right)}
Multiply complex numbers 3-i and 2-i like you multiply binomials.
\frac{3\times 2+3\left(-i\right)-i\times 2-\left(-\left(-1\right)\right)}{\left(2+ui\right)\left(2-ui\right)}
By definition, i^{2} is -1.
\frac{6-3i-2i-1}{\left(2+ui\right)\left(2-ui\right)}
Do the multiplications in 3\times 2+3\left(-i\right)-i\times 2-\left(-\left(-1\right)\right).
\frac{6-1+\left(-3-2\right)i}{\left(2+ui\right)\left(2-ui\right)}
Combine the real and imaginary parts in 6-3i-2i-1.
\frac{5-5i}{\left(2+ui\right)\left(2-ui\right)}
Do the additions in 6-1+\left(-3-2\right)i.
\frac{5-5i}{2^{2}-\left(ui\right)^{2}}
Consider \left(2+ui\right)\left(2-ui\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5-5i}{4-\left(ui\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{5-5i}{4-u^{2}i^{2}}
Expand \left(ui\right)^{2}.
\frac{5-5i}{4-u^{2}\left(-1\right)}
Calculate i to the power of 2 and get -1.
\frac{5-5i}{4+u^{2}}
Multiply -1 and -1 to get 1.