Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{8-6i}{1+i}
Calculate 3-i to the power of 2 and get 8-6i.
\frac{\left(8-6i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{2-14i}{2}
Do the multiplications in \frac{\left(8-6i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
1-7i
Divide 2-14i by 2 to get 1-7i.
Re(\frac{8-6i}{1+i})
Calculate 3-i to the power of 2 and get 8-6i.
Re(\frac{\left(8-6i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{8-6i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{2-14i}{2})
Do the multiplications in \frac{\left(8-6i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(1-7i)
Divide 2-14i by 2 to get 1-7i.
1
The real part of 1-7i is 1.