Evaluate
1-18i
Real Part
1
Share
Copied to clipboard
\frac{\left(3-2i\right)\left(4+3i\right)}{i}\times 1
Divide i by i to get 1.
\frac{3\times 4+3\times \left(3i\right)-2i\times 4-2\times 3i^{2}}{i}\times 1
Multiply complex numbers 3-2i and 4+3i like you multiply binomials.
\frac{3\times 4+3\times \left(3i\right)-2i\times 4-2\times 3\left(-1\right)}{i}\times 1
By definition, i^{2} is -1.
\frac{12+9i-8i+6}{i}\times 1
Do the multiplications in 3\times 4+3\times \left(3i\right)-2i\times 4-2\times 3\left(-1\right).
\frac{12+6+\left(9-8\right)i}{i}\times 1
Combine the real and imaginary parts in 12+9i-8i+6.
\frac{18+i}{i}\times 1
Do the additions in 12+6+\left(9-8\right)i.
\frac{\left(18+i\right)i}{1i^{2}}\times 1
Multiply both numerator and denominator of \frac{18+i}{i} by imaginary unit i.
\frac{\left(18+i\right)i}{-1}\times 1
By definition, i^{2} is -1. Calculate the denominator.
\frac{18i+i^{2}}{-1}\times 1
Multiply 18+i times i.
\frac{18i-1}{-1}\times 1
By definition, i^{2} is -1.
\frac{-1+18i}{-1}\times 1
Reorder the terms.
\left(1-18i\right)\times 1
Divide -1+18i by -1 to get 1-18i.
1-18i
Multiply 1-18i and 1 to get 1-18i.
Re(\frac{\left(3-2i\right)\left(4+3i\right)}{i}\times 1)
Divide i by i to get 1.
Re(\frac{3\times 4+3\times \left(3i\right)-2i\times 4-2\times 3i^{2}}{i}\times 1)
Multiply complex numbers 3-2i and 4+3i like you multiply binomials.
Re(\frac{3\times 4+3\times \left(3i\right)-2i\times 4-2\times 3\left(-1\right)}{i}\times 1)
By definition, i^{2} is -1.
Re(\frac{12+9i-8i+6}{i}\times 1)
Do the multiplications in 3\times 4+3\times \left(3i\right)-2i\times 4-2\times 3\left(-1\right).
Re(\frac{12+6+\left(9-8\right)i}{i}\times 1)
Combine the real and imaginary parts in 12+9i-8i+6.
Re(\frac{18+i}{i}\times 1)
Do the additions in 12+6+\left(9-8\right)i.
Re(\frac{\left(18+i\right)i}{1i^{2}}\times 1)
Multiply both numerator and denominator of \frac{18+i}{i} by imaginary unit i.
Re(\frac{\left(18+i\right)i}{-1}\times 1)
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{18i+i^{2}}{-1}\times 1)
Multiply 18+i times i.
Re(\frac{18i-1}{-1}\times 1)
By definition, i^{2} is -1.
Re(\frac{-1+18i}{-1}\times 1)
Reorder the terms.
Re(\left(1-18i\right)\times 1)
Divide -1+18i by -1 to get 1-18i.
Re(1-18i)
Multiply 1-18i and 1 to get 1-18i.
1
The real part of 1-18i is 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}