Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{9-12\sqrt{2}+4\left(\sqrt{2}\right)^{2}-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-2\sqrt{2}\right)^{2}.
\frac{9-12\sqrt{2}+4\times 2-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{9-12\sqrt{2}+8-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{17-12\sqrt{2}-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Add 9 and 8 to get 17.
\frac{17-12\sqrt{2}-\left(9+12\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+2\sqrt{2}\right)^{2}.
\frac{17-12\sqrt{2}-\left(9+12\sqrt{2}+4\times 2\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{17-12\sqrt{2}-\left(9+12\sqrt{2}+8\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{17-12\sqrt{2}-\left(17+12\sqrt{2}\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Add 9 and 8 to get 17.
\frac{17-12\sqrt{2}-17-12\sqrt{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
To find the opposite of 17+12\sqrt{2}, find the opposite of each term.
\frac{-12\sqrt{2}-12\sqrt{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Subtract 17 from 17 to get 0.
\frac{-24\sqrt{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Combine -12\sqrt{2} and -12\sqrt{2} to get -24\sqrt{2}.
\frac{-24\sqrt{2}}{9-12\sqrt{2}+4\left(\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-2\sqrt{2}\right)^{2}.
\frac{-24\sqrt{2}}{9-12\sqrt{2}+4\times 2+\left(3+2\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{-24\sqrt{2}}{9-12\sqrt{2}+8+\left(3+2\sqrt{2}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+\left(3+2\sqrt{2}\right)^{2}}
Add 9 and 8 to get 17.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+9+12\sqrt{2}+4\left(\sqrt{2}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+2\sqrt{2}\right)^{2}.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+9+12\sqrt{2}+4\times 2}
The square of \sqrt{2} is 2.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+9+12\sqrt{2}+8}
Multiply 4 and 2 to get 8.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+17+12\sqrt{2}}
Add 9 and 8 to get 17.
\frac{-24\sqrt{2}}{34-12\sqrt{2}+12\sqrt{2}}
Add 17 and 17 to get 34.
\frac{-24\sqrt{2}}{34}
Combine -12\sqrt{2} and 12\sqrt{2} to get 0.
-\frac{12}{17}\sqrt{2}
Divide -24\sqrt{2} by 34 to get -\frac{12}{17}\sqrt{2}.
\frac{9-12\sqrt{2}+4\left(\sqrt{2}\right)^{2}-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-2\sqrt{2}\right)^{2}.
\frac{9-12\sqrt{2}+4\times 2-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{9-12\sqrt{2}+8-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{17-12\sqrt{2}-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Add 9 and 8 to get 17.
\frac{17-12\sqrt{2}-\left(9+12\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+2\sqrt{2}\right)^{2}.
\frac{17-12\sqrt{2}-\left(9+12\sqrt{2}+4\times 2\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{17-12\sqrt{2}-\left(9+12\sqrt{2}+8\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{17-12\sqrt{2}-\left(17+12\sqrt{2}\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Add 9 and 8 to get 17.
\frac{17-12\sqrt{2}-17-12\sqrt{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
To find the opposite of 17+12\sqrt{2}, find the opposite of each term.
\frac{-12\sqrt{2}-12\sqrt{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Subtract 17 from 17 to get 0.
\frac{-24\sqrt{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Combine -12\sqrt{2} and -12\sqrt{2} to get -24\sqrt{2}.
\frac{-24\sqrt{2}}{9-12\sqrt{2}+4\left(\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-2\sqrt{2}\right)^{2}.
\frac{-24\sqrt{2}}{9-12\sqrt{2}+4\times 2+\left(3+2\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{-24\sqrt{2}}{9-12\sqrt{2}+8+\left(3+2\sqrt{2}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+\left(3+2\sqrt{2}\right)^{2}}
Add 9 and 8 to get 17.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+9+12\sqrt{2}+4\left(\sqrt{2}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+2\sqrt{2}\right)^{2}.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+9+12\sqrt{2}+4\times 2}
The square of \sqrt{2} is 2.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+9+12\sqrt{2}+8}
Multiply 4 and 2 to get 8.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+17+12\sqrt{2}}
Add 9 and 8 to get 17.
\frac{-24\sqrt{2}}{34-12\sqrt{2}+12\sqrt{2}}
Add 17 and 17 to get 34.
\frac{-24\sqrt{2}}{34}
Combine -12\sqrt{2} and 12\sqrt{2} to get 0.
-\frac{12}{17}\sqrt{2}
Divide -24\sqrt{2} by 34 to get -\frac{12}{17}\sqrt{2}.