Evaluate
-\frac{12\sqrt{2}}{17}\approx -0.998268397
Expand
-\frac{12 \sqrt{2}}{17} = -0.9982683969692436
Share
Copied to clipboard
\frac{9-12\sqrt{2}+4\left(\sqrt{2}\right)^{2}-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-2\sqrt{2}\right)^{2}.
\frac{9-12\sqrt{2}+4\times 2-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{9-12\sqrt{2}+8-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{17-12\sqrt{2}-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Add 9 and 8 to get 17.
\frac{17-12\sqrt{2}-\left(9+12\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+2\sqrt{2}\right)^{2}.
\frac{17-12\sqrt{2}-\left(9+12\sqrt{2}+4\times 2\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{17-12\sqrt{2}-\left(9+12\sqrt{2}+8\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{17-12\sqrt{2}-\left(17+12\sqrt{2}\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Add 9 and 8 to get 17.
\frac{17-12\sqrt{2}-17-12\sqrt{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
To find the opposite of 17+12\sqrt{2}, find the opposite of each term.
\frac{-12\sqrt{2}-12\sqrt{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Subtract 17 from 17 to get 0.
\frac{-24\sqrt{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Combine -12\sqrt{2} and -12\sqrt{2} to get -24\sqrt{2}.
\frac{-24\sqrt{2}}{9-12\sqrt{2}+4\left(\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-2\sqrt{2}\right)^{2}.
\frac{-24\sqrt{2}}{9-12\sqrt{2}+4\times 2+\left(3+2\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{-24\sqrt{2}}{9-12\sqrt{2}+8+\left(3+2\sqrt{2}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+\left(3+2\sqrt{2}\right)^{2}}
Add 9 and 8 to get 17.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+9+12\sqrt{2}+4\left(\sqrt{2}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+2\sqrt{2}\right)^{2}.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+9+12\sqrt{2}+4\times 2}
The square of \sqrt{2} is 2.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+9+12\sqrt{2}+8}
Multiply 4 and 2 to get 8.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+17+12\sqrt{2}}
Add 9 and 8 to get 17.
\frac{-24\sqrt{2}}{34-12\sqrt{2}+12\sqrt{2}}
Add 17 and 17 to get 34.
\frac{-24\sqrt{2}}{34}
Combine -12\sqrt{2} and 12\sqrt{2} to get 0.
-\frac{12}{17}\sqrt{2}
Divide -24\sqrt{2} by 34 to get -\frac{12}{17}\sqrt{2}.
\frac{9-12\sqrt{2}+4\left(\sqrt{2}\right)^{2}-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-2\sqrt{2}\right)^{2}.
\frac{9-12\sqrt{2}+4\times 2-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{9-12\sqrt{2}+8-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{17-12\sqrt{2}-\left(3+2\sqrt{2}\right)^{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Add 9 and 8 to get 17.
\frac{17-12\sqrt{2}-\left(9+12\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+2\sqrt{2}\right)^{2}.
\frac{17-12\sqrt{2}-\left(9+12\sqrt{2}+4\times 2\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{17-12\sqrt{2}-\left(9+12\sqrt{2}+8\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{17-12\sqrt{2}-\left(17+12\sqrt{2}\right)}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Add 9 and 8 to get 17.
\frac{17-12\sqrt{2}-17-12\sqrt{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
To find the opposite of 17+12\sqrt{2}, find the opposite of each term.
\frac{-12\sqrt{2}-12\sqrt{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Subtract 17 from 17 to get 0.
\frac{-24\sqrt{2}}{\left(3-2\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Combine -12\sqrt{2} and -12\sqrt{2} to get -24\sqrt{2}.
\frac{-24\sqrt{2}}{9-12\sqrt{2}+4\left(\sqrt{2}\right)^{2}+\left(3+2\sqrt{2}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-2\sqrt{2}\right)^{2}.
\frac{-24\sqrt{2}}{9-12\sqrt{2}+4\times 2+\left(3+2\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{-24\sqrt{2}}{9-12\sqrt{2}+8+\left(3+2\sqrt{2}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+\left(3+2\sqrt{2}\right)^{2}}
Add 9 and 8 to get 17.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+9+12\sqrt{2}+4\left(\sqrt{2}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+2\sqrt{2}\right)^{2}.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+9+12\sqrt{2}+4\times 2}
The square of \sqrt{2} is 2.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+9+12\sqrt{2}+8}
Multiply 4 and 2 to get 8.
\frac{-24\sqrt{2}}{17-12\sqrt{2}+17+12\sqrt{2}}
Add 9 and 8 to get 17.
\frac{-24\sqrt{2}}{34-12\sqrt{2}+12\sqrt{2}}
Add 17 and 17 to get 34.
\frac{-24\sqrt{2}}{34}
Combine -12\sqrt{2} and 12\sqrt{2} to get 0.
-\frac{12}{17}\sqrt{2}
Divide -24\sqrt{2} by 34 to get -\frac{12}{17}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}