Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{62}{3}x\times \frac{\left(3-\frac{1}{2}\right)\times \frac{1}{12}}{3-7}=\frac{4}{3}\times \frac{5}{6}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{62}{3}x\times \frac{\left(\frac{6}{2}-\frac{1}{2}\right)\times \frac{1}{12}}{3-7}=\frac{4}{3}\times \frac{5}{6}
Convert 3 to fraction \frac{6}{2}.
\frac{62}{3}x\times \frac{\frac{6-1}{2}\times \frac{1}{12}}{3-7}=\frac{4}{3}\times \frac{5}{6}
Since \frac{6}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{62}{3}x\times \frac{\frac{5}{2}\times \frac{1}{12}}{3-7}=\frac{4}{3}\times \frac{5}{6}
Subtract 1 from 6 to get 5.
\frac{62}{3}x\times \frac{\frac{5\times 1}{2\times 12}}{3-7}=\frac{4}{3}\times \frac{5}{6}
Multiply \frac{5}{2} times \frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{62}{3}x\times \frac{\frac{5}{24}}{3-7}=\frac{4}{3}\times \frac{5}{6}
Do the multiplications in the fraction \frac{5\times 1}{2\times 12}.
\frac{62}{3}x\times \frac{\frac{5}{24}}{-4}=\frac{4}{3}\times \frac{5}{6}
Subtract 7 from 3 to get -4.
\frac{62}{3}x\times \frac{5}{24\left(-4\right)}=\frac{4}{3}\times \frac{5}{6}
Express \frac{\frac{5}{24}}{-4} as a single fraction.
\frac{62}{3}x\times \frac{5}{-96}=\frac{4}{3}\times \frac{5}{6}
Multiply 24 and -4 to get -96.
\frac{62}{3}x\left(-\frac{5}{96}\right)=\frac{4}{3}\times \frac{5}{6}
Fraction \frac{5}{-96} can be rewritten as -\frac{5}{96} by extracting the negative sign.
\frac{62\left(-5\right)}{3\times 96}x=\frac{4}{3}\times \frac{5}{6}
Multiply \frac{62}{3} times -\frac{5}{96} by multiplying numerator times numerator and denominator times denominator.
\frac{-310}{288}x=\frac{4}{3}\times \frac{5}{6}
Do the multiplications in the fraction \frac{62\left(-5\right)}{3\times 96}.
-\frac{155}{144}x=\frac{4}{3}\times \frac{5}{6}
Reduce the fraction \frac{-310}{288} to lowest terms by extracting and canceling out 2.
-\frac{155}{144}x=\frac{4\times 5}{3\times 6}
Multiply \frac{4}{3} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
-\frac{155}{144}x=\frac{20}{18}
Do the multiplications in the fraction \frac{4\times 5}{3\times 6}.
-\frac{155}{144}x=\frac{10}{9}
Reduce the fraction \frac{20}{18} to lowest terms by extracting and canceling out 2.
x=\frac{10}{9}\left(-\frac{144}{155}\right)
Multiply both sides by -\frac{144}{155}, the reciprocal of -\frac{155}{144}.
x=\frac{10\left(-144\right)}{9\times 155}
Multiply \frac{10}{9} times -\frac{144}{155} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-1440}{1395}
Do the multiplications in the fraction \frac{10\left(-144\right)}{9\times 155}.
x=-\frac{32}{31}
Reduce the fraction \frac{-1440}{1395} to lowest terms by extracting and canceling out 45.