\frac { ( 3 - \frac { 1 } { 2 } ) \cdot \frac { 1 } { 12 } } { ( 3 - 7 ) } : \frac { 1 - \frac { 7 } { 10 } } { 6,2 } = ( \frac { 4 } { 3 } \cdot \frac { 5 } { 6 } ) : x
Solve for x
x=-\frac{32}{31}\approx -1,032258065
Graph
Share
Copied to clipboard
\frac{62}{3}x\times \frac{\left(3-\frac{1}{2}\right)\times \frac{1}{12}}{3-7}=\frac{4}{3}\times \frac{5}{6}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{62}{3}x\times \frac{\left(\frac{6}{2}-\frac{1}{2}\right)\times \frac{1}{12}}{3-7}=\frac{4}{3}\times \frac{5}{6}
Convert 3 to fraction \frac{6}{2}.
\frac{62}{3}x\times \frac{\frac{6-1}{2}\times \frac{1}{12}}{3-7}=\frac{4}{3}\times \frac{5}{6}
Since \frac{6}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{62}{3}x\times \frac{\frac{5}{2}\times \frac{1}{12}}{3-7}=\frac{4}{3}\times \frac{5}{6}
Subtract 1 from 6 to get 5.
\frac{62}{3}x\times \frac{\frac{5\times 1}{2\times 12}}{3-7}=\frac{4}{3}\times \frac{5}{6}
Multiply \frac{5}{2} times \frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{62}{3}x\times \frac{\frac{5}{24}}{3-7}=\frac{4}{3}\times \frac{5}{6}
Do the multiplications in the fraction \frac{5\times 1}{2\times 12}.
\frac{62}{3}x\times \frac{\frac{5}{24}}{-4}=\frac{4}{3}\times \frac{5}{6}
Subtract 7 from 3 to get -4.
\frac{62}{3}x\times \frac{5}{24\left(-4\right)}=\frac{4}{3}\times \frac{5}{6}
Express \frac{\frac{5}{24}}{-4} as a single fraction.
\frac{62}{3}x\times \frac{5}{-96}=\frac{4}{3}\times \frac{5}{6}
Multiply 24 and -4 to get -96.
\frac{62}{3}x\left(-\frac{5}{96}\right)=\frac{4}{3}\times \frac{5}{6}
Fraction \frac{5}{-96} can be rewritten as -\frac{5}{96} by extracting the negative sign.
\frac{62\left(-5\right)}{3\times 96}x=\frac{4}{3}\times \frac{5}{6}
Multiply \frac{62}{3} times -\frac{5}{96} by multiplying numerator times numerator and denominator times denominator.
\frac{-310}{288}x=\frac{4}{3}\times \frac{5}{6}
Do the multiplications in the fraction \frac{62\left(-5\right)}{3\times 96}.
-\frac{155}{144}x=\frac{4}{3}\times \frac{5}{6}
Reduce the fraction \frac{-310}{288} to lowest terms by extracting and canceling out 2.
-\frac{155}{144}x=\frac{4\times 5}{3\times 6}
Multiply \frac{4}{3} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
-\frac{155}{144}x=\frac{20}{18}
Do the multiplications in the fraction \frac{4\times 5}{3\times 6}.
-\frac{155}{144}x=\frac{10}{9}
Reduce the fraction \frac{20}{18} to lowest terms by extracting and canceling out 2.
x=\frac{10}{9}\left(-\frac{144}{155}\right)
Multiply both sides by -\frac{144}{155}, the reciprocal of -\frac{155}{144}.
x=\frac{10\left(-144\right)}{9\times 155}
Multiply \frac{10}{9} times -\frac{144}{155} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-1440}{1395}
Do the multiplications in the fraction \frac{10\left(-144\right)}{9\times 155}.
x=-\frac{32}{31}
Reduce the fraction \frac{-1440}{1395} to lowest terms by extracting and canceling out 45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}