Evaluate
\frac{64}{9}\approx 7.111111111
Factor
\frac{2 ^ {6}}{3 ^ {2}} = 7\frac{1}{9} = 7.111111111111111
Share
Copied to clipboard
\frac{3^{-6}\times \left(2^{2}\right)^{-3}}{\left(2^{4}\right)^{-2}\times 3^{-4}\times 4^{-2}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{3^{-6}\times 2^{-6}}{\left(2^{4}\right)^{-2}\times 3^{-4}\times 4^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{3^{-6}\times 2^{-6}}{2^{-8}\times 3^{-4}\times 4^{-2}}
To raise a power to another power, multiply the exponents. Multiply 4 and -2 to get -8.
\frac{2^{2}\times 3^{-6}}{3^{-4}\times 4^{-2}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{2^{2}}{3^{2}\times 4^{-2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{4}{3^{2}\times 4^{-2}}
Calculate 2 to the power of 2 and get 4.
\frac{4}{9\times 4^{-2}}
Calculate 3 to the power of 2 and get 9.
\frac{4}{9\times \frac{1}{16}}
Calculate 4 to the power of -2 and get \frac{1}{16}.
\frac{4}{\frac{9}{16}}
Multiply 9 and \frac{1}{16} to get \frac{9}{16}.
4\times \frac{16}{9}
Divide 4 by \frac{9}{16} by multiplying 4 by the reciprocal of \frac{9}{16}.
\frac{64}{9}
Multiply 4 and \frac{16}{9} to get \frac{64}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}