Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{1}{3}a^{-1}b^{-2}\right)^{-2}\times \left(4a^{-3}b^{4}\right)^{-2}}{\left(3a^{-3}b^{-4}\right)^{2}}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{\left(\frac{1}{3}\right)^{-2}\left(a^{-1}\right)^{-2}\left(b^{-2}\right)^{-2}\times \left(4a^{-3}b^{4}\right)^{-2}}{\left(3a^{-3}b^{-4}\right)^{2}}
Expand \left(\frac{1}{3}a^{-1}b^{-2}\right)^{-2}.
\frac{\left(\frac{1}{3}\right)^{-2}a^{2}\left(b^{-2}\right)^{-2}\times \left(4a^{-3}b^{4}\right)^{-2}}{\left(3a^{-3}b^{-4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -1 and -2 to get 2.
\frac{\left(\frac{1}{3}\right)^{-2}a^{2}b^{4}\times \left(4a^{-3}b^{4}\right)^{-2}}{\left(3a^{-3}b^{-4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
\frac{9a^{2}b^{4}\times \left(4a^{-3}b^{4}\right)^{-2}}{\left(3a^{-3}b^{-4}\right)^{2}}
Calculate \frac{1}{3} to the power of -2 and get 9.
\frac{9a^{2}b^{4}\times 4^{-2}\left(a^{-3}\right)^{-2}\left(b^{4}\right)^{-2}}{\left(3a^{-3}b^{-4}\right)^{2}}
Expand \left(4a^{-3}b^{4}\right)^{-2}.
\frac{9a^{2}b^{4}\times 4^{-2}a^{6}\left(b^{4}\right)^{-2}}{\left(3a^{-3}b^{-4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{9a^{2}b^{4}\times 4^{-2}a^{6}b^{-8}}{\left(3a^{-3}b^{-4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 4 and -2 to get -8.
\frac{9a^{2}b^{4}\times \frac{1}{16}a^{6}b^{-8}}{\left(3a^{-3}b^{-4}\right)^{2}}
Calculate 4 to the power of -2 and get \frac{1}{16}.
\frac{\frac{9}{16}a^{2}b^{4}a^{6}b^{-8}}{\left(3a^{-3}b^{-4}\right)^{2}}
Multiply 9 and \frac{1}{16} to get \frac{9}{16}.
\frac{\frac{9}{16}a^{8}b^{4}b^{-8}}{\left(3a^{-3}b^{-4}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 6 to get 8.
\frac{\frac{9}{16}a^{8}b^{-4}}{\left(3a^{-3}b^{-4}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 4 and -8 to get -4.
\frac{\frac{9}{16}a^{8}b^{-4}}{3^{2}\left(a^{-3}\right)^{2}\left(b^{-4}\right)^{2}}
Expand \left(3a^{-3}b^{-4}\right)^{2}.
\frac{\frac{9}{16}a^{8}b^{-4}}{3^{2}a^{-6}\left(b^{-4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{\frac{9}{16}a^{8}b^{-4}}{3^{2}a^{-6}b^{-8}}
To raise a power to another power, multiply the exponents. Multiply -4 and 2 to get -8.
\frac{\frac{9}{16}a^{8}b^{-4}}{9a^{-6}b^{-8}}
Calculate 3 to the power of 2 and get 9.
\frac{\frac{9}{16}b^{4}a^{14}}{9}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{1}{16}b^{4}a^{14}
Divide \frac{9}{16}b^{4}a^{14} by 9 to get \frac{1}{16}b^{4}a^{14}.
\frac{\left(\frac{1}{3}a^{-1}b^{-2}\right)^{-2}\times \left(4a^{-3}b^{4}\right)^{-2}}{\left(3a^{-3}b^{-4}\right)^{2}}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{\left(\frac{1}{3}\right)^{-2}\left(a^{-1}\right)^{-2}\left(b^{-2}\right)^{-2}\times \left(4a^{-3}b^{4}\right)^{-2}}{\left(3a^{-3}b^{-4}\right)^{2}}
Expand \left(\frac{1}{3}a^{-1}b^{-2}\right)^{-2}.
\frac{\left(\frac{1}{3}\right)^{-2}a^{2}\left(b^{-2}\right)^{-2}\times \left(4a^{-3}b^{4}\right)^{-2}}{\left(3a^{-3}b^{-4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -1 and -2 to get 2.
\frac{\left(\frac{1}{3}\right)^{-2}a^{2}b^{4}\times \left(4a^{-3}b^{4}\right)^{-2}}{\left(3a^{-3}b^{-4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
\frac{9a^{2}b^{4}\times \left(4a^{-3}b^{4}\right)^{-2}}{\left(3a^{-3}b^{-4}\right)^{2}}
Calculate \frac{1}{3} to the power of -2 and get 9.
\frac{9a^{2}b^{4}\times 4^{-2}\left(a^{-3}\right)^{-2}\left(b^{4}\right)^{-2}}{\left(3a^{-3}b^{-4}\right)^{2}}
Expand \left(4a^{-3}b^{4}\right)^{-2}.
\frac{9a^{2}b^{4}\times 4^{-2}a^{6}\left(b^{4}\right)^{-2}}{\left(3a^{-3}b^{-4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{9a^{2}b^{4}\times 4^{-2}a^{6}b^{-8}}{\left(3a^{-3}b^{-4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 4 and -2 to get -8.
\frac{9a^{2}b^{4}\times \frac{1}{16}a^{6}b^{-8}}{\left(3a^{-3}b^{-4}\right)^{2}}
Calculate 4 to the power of -2 and get \frac{1}{16}.
\frac{\frac{9}{16}a^{2}b^{4}a^{6}b^{-8}}{\left(3a^{-3}b^{-4}\right)^{2}}
Multiply 9 and \frac{1}{16} to get \frac{9}{16}.
\frac{\frac{9}{16}a^{8}b^{4}b^{-8}}{\left(3a^{-3}b^{-4}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 6 to get 8.
\frac{\frac{9}{16}a^{8}b^{-4}}{\left(3a^{-3}b^{-4}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 4 and -8 to get -4.
\frac{\frac{9}{16}a^{8}b^{-4}}{3^{2}\left(a^{-3}\right)^{2}\left(b^{-4}\right)^{2}}
Expand \left(3a^{-3}b^{-4}\right)^{2}.
\frac{\frac{9}{16}a^{8}b^{-4}}{3^{2}a^{-6}\left(b^{-4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{\frac{9}{16}a^{8}b^{-4}}{3^{2}a^{-6}b^{-8}}
To raise a power to another power, multiply the exponents. Multiply -4 and 2 to get -8.
\frac{\frac{9}{16}a^{8}b^{-4}}{9a^{-6}b^{-8}}
Calculate 3 to the power of 2 and get 9.
\frac{\frac{9}{16}b^{4}a^{14}}{9}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{1}{16}b^{4}a^{14}
Divide \frac{9}{16}b^{4}a^{14} by 9 to get \frac{1}{16}b^{4}a^{14}.