Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2i^{2}}{1+i}
Multiply complex numbers 3+4i and 1+2i like you multiply binomials.
\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right)}{1+i}
By definition, i^{2} is -1.
\frac{3+6i+4i-8}{1+i}
Do the multiplications in 3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right).
\frac{3-8+\left(6+4\right)i}{1+i}
Combine the real and imaginary parts in 3+6i+4i-8.
\frac{-5+10i}{1+i}
Do the additions in 3-8+\left(6+4\right)i.
\frac{\left(-5+10i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{\left(-5+10i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-5+10i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)i^{2}}{2}
Multiply complex numbers -5+10i and 1-i like you multiply binomials.
\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right)}{2}
By definition, i^{2} is -1.
\frac{-5+5i+10i+10}{2}
Do the multiplications in -5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right).
\frac{-5+10+\left(5+10\right)i}{2}
Combine the real and imaginary parts in -5+5i+10i+10.
\frac{5+15i}{2}
Do the additions in -5+10+\left(5+10\right)i.
\frac{5}{2}+\frac{15}{2}i
Divide 5+15i by 2 to get \frac{5}{2}+\frac{15}{2}i.
Re(\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2i^{2}}{1+i})
Multiply complex numbers 3+4i and 1+2i like you multiply binomials.
Re(\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right)}{1+i})
By definition, i^{2} is -1.
Re(\frac{3+6i+4i-8}{1+i})
Do the multiplications in 3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right).
Re(\frac{3-8+\left(6+4\right)i}{1+i})
Combine the real and imaginary parts in 3+6i+4i-8.
Re(\frac{-5+10i}{1+i})
Do the additions in 3-8+\left(6+4\right)i.
Re(\frac{\left(-5+10i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{-5+10i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{\left(-5+10i\right)\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-5+10i\right)\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)i^{2}}{2})
Multiply complex numbers -5+10i and 1-i like you multiply binomials.
Re(\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(\frac{-5+5i+10i+10}{2})
Do the multiplications in -5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right).
Re(\frac{-5+10+\left(5+10\right)i}{2})
Combine the real and imaginary parts in -5+5i+10i+10.
Re(\frac{5+15i}{2})
Do the additions in -5+10+\left(5+10\right)i.
Re(\frac{5}{2}+\frac{15}{2}i)
Divide 5+15i by 2 to get \frac{5}{2}+\frac{15}{2}i.
\frac{5}{2}
The real part of \frac{5}{2}+\frac{15}{2}i is \frac{5}{2}.