Evaluate
\frac{5}{2}+\frac{15}{2}i=2.5+7.5i
Real Part
\frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2i^{2}}{1+i}
Multiply complex numbers 3+4i and 1+2i like you multiply binomials.
\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right)}{1+i}
By definition, i^{2} is -1.
\frac{3+6i+4i-8}{1+i}
Do the multiplications in 3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right).
\frac{3-8+\left(6+4\right)i}{1+i}
Combine the real and imaginary parts in 3+6i+4i-8.
\frac{-5+10i}{1+i}
Do the additions in 3-8+\left(6+4\right)i.
\frac{\left(-5+10i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{\left(-5+10i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-5+10i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)i^{2}}{2}
Multiply complex numbers -5+10i and 1-i like you multiply binomials.
\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right)}{2}
By definition, i^{2} is -1.
\frac{-5+5i+10i+10}{2}
Do the multiplications in -5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right).
\frac{-5+10+\left(5+10\right)i}{2}
Combine the real and imaginary parts in -5+5i+10i+10.
\frac{5+15i}{2}
Do the additions in -5+10+\left(5+10\right)i.
\frac{5}{2}+\frac{15}{2}i
Divide 5+15i by 2 to get \frac{5}{2}+\frac{15}{2}i.
Re(\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2i^{2}}{1+i})
Multiply complex numbers 3+4i and 1+2i like you multiply binomials.
Re(\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right)}{1+i})
By definition, i^{2} is -1.
Re(\frac{3+6i+4i-8}{1+i})
Do the multiplications in 3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right).
Re(\frac{3-8+\left(6+4\right)i}{1+i})
Combine the real and imaginary parts in 3+6i+4i-8.
Re(\frac{-5+10i}{1+i})
Do the additions in 3-8+\left(6+4\right)i.
Re(\frac{\left(-5+10i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{-5+10i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{\left(-5+10i\right)\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-5+10i\right)\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)i^{2}}{2})
Multiply complex numbers -5+10i and 1-i like you multiply binomials.
Re(\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(\frac{-5+5i+10i+10}{2})
Do the multiplications in -5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right).
Re(\frac{-5+10+\left(5+10\right)i}{2})
Combine the real and imaginary parts in -5+5i+10i+10.
Re(\frac{5+15i}{2})
Do the additions in -5+10+\left(5+10\right)i.
Re(\frac{5}{2}+\frac{15}{2}i)
Divide 5+15i by 2 to get \frac{5}{2}+\frac{15}{2}i.
\frac{5}{2}
The real part of \frac{5}{2}+\frac{15}{2}i is \frac{5}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}