Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+2i\right)\left(4+2i\right)}{\left(4-2i\right)\left(4+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+2i.
\frac{\left(3+2i\right)\left(4+2i\right)}{4^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2i\right)\left(4+2i\right)}{20}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 4+3\times \left(2i\right)+2i\times 4+2\times 2i^{2}}{20}
Multiply complex numbers 3+2i and 4+2i like you multiply binomials.
\frac{3\times 4+3\times \left(2i\right)+2i\times 4+2\times 2\left(-1\right)}{20}
By definition, i^{2} is -1.
\frac{12+6i+8i-4}{20}
Do the multiplications in 3\times 4+3\times \left(2i\right)+2i\times 4+2\times 2\left(-1\right).
\frac{12-4+\left(6+8\right)i}{20}
Combine the real and imaginary parts in 12+6i+8i-4.
\frac{8+14i}{20}
Do the additions in 12-4+\left(6+8\right)i.
\frac{2}{5}+\frac{7}{10}i
Divide 8+14i by 20 to get \frac{2}{5}+\frac{7}{10}i.
Re(\frac{\left(3+2i\right)\left(4+2i\right)}{\left(4-2i\right)\left(4+2i\right)})
Multiply both numerator and denominator of \frac{3+2i}{4-2i} by the complex conjugate of the denominator, 4+2i.
Re(\frac{\left(3+2i\right)\left(4+2i\right)}{4^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+2i\right)\left(4+2i\right)}{20})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 4+3\times \left(2i\right)+2i\times 4+2\times 2i^{2}}{20})
Multiply complex numbers 3+2i and 4+2i like you multiply binomials.
Re(\frac{3\times 4+3\times \left(2i\right)+2i\times 4+2\times 2\left(-1\right)}{20})
By definition, i^{2} is -1.
Re(\frac{12+6i+8i-4}{20})
Do the multiplications in 3\times 4+3\times \left(2i\right)+2i\times 4+2\times 2\left(-1\right).
Re(\frac{12-4+\left(6+8\right)i}{20})
Combine the real and imaginary parts in 12+6i+8i-4.
Re(\frac{8+14i}{20})
Do the additions in 12-4+\left(6+8\right)i.
Re(\frac{2}{5}+\frac{7}{10}i)
Divide 8+14i by 20 to get \frac{2}{5}+\frac{7}{10}i.
\frac{2}{5}
The real part of \frac{2}{5}+\frac{7}{10}i is \frac{2}{5}.