Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{9+6\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{5}\right)^{2}.
\frac{9+6\sqrt{5}+5-\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
The square of \sqrt{5} is 5.
\frac{14+6\sqrt{5}-\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Add 9 and 5 to get 14.
\frac{14+6\sqrt{5}-\left(4-\left(\sqrt{5}\right)^{2}\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Consider \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
\frac{14+6\sqrt{5}-\left(4-5\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
The square of \sqrt{5} is 5.
\frac{14+6\sqrt{5}-\left(-1\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Subtract 5 from 4 to get -1.
\frac{14+6\sqrt{5}+1}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
The opposite of -1 is 1.
\frac{14+6\sqrt{5}+1}{\left(\sqrt{7}\right)^{2}-4}
Consider \left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
\frac{14+6\sqrt{5}+1}{7-4}
The square of \sqrt{7} is 7.
\frac{14+6\sqrt{5}+1}{3}
Subtract 4 from 7 to get 3.
\frac{15+6\sqrt{5}}{3}
Add 14 and 1 to get 15.
5+2\sqrt{5}
Divide each term of 15+6\sqrt{5} by 3 to get 5+2\sqrt{5}.