Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(26x-52\right)\left(x-5\right)=\left(46x-92\right)\times 0
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 46\left(x-2\right).
26x^{2}-182x+260=\left(46x-92\right)\times 0
Use the distributive property to multiply 26x-52 by x-5 and combine like terms.
26x^{2}-182x+260=0
Anything times zero gives zero.
x=\frac{-\left(-182\right)±\sqrt{\left(-182\right)^{2}-4\times 26\times 260}}{2\times 26}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 26 for a, -182 for b, and 260 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-182\right)±\sqrt{33124-4\times 26\times 260}}{2\times 26}
Square -182.
x=\frac{-\left(-182\right)±\sqrt{33124-104\times 260}}{2\times 26}
Multiply -4 times 26.
x=\frac{-\left(-182\right)±\sqrt{33124-27040}}{2\times 26}
Multiply -104 times 260.
x=\frac{-\left(-182\right)±\sqrt{6084}}{2\times 26}
Add 33124 to -27040.
x=\frac{-\left(-182\right)±78}{2\times 26}
Take the square root of 6084.
x=\frac{182±78}{2\times 26}
The opposite of -182 is 182.
x=\frac{182±78}{52}
Multiply 2 times 26.
x=\frac{260}{52}
Now solve the equation x=\frac{182±78}{52} when ± is plus. Add 182 to 78.
x=5
Divide 260 by 52.
x=\frac{104}{52}
Now solve the equation x=\frac{182±78}{52} when ± is minus. Subtract 78 from 182.
x=2
Divide 104 by 52.
x=5 x=2
The equation is now solved.
x=5
Variable x cannot be equal to 2.
\left(26x-52\right)\left(x-5\right)=\left(46x-92\right)\times 0
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 46\left(x-2\right).
26x^{2}-182x+260=\left(46x-92\right)\times 0
Use the distributive property to multiply 26x-52 by x-5 and combine like terms.
26x^{2}-182x+260=0
Anything times zero gives zero.
26x^{2}-182x=-260
Subtract 260 from both sides. Anything subtracted from zero gives its negation.
\frac{26x^{2}-182x}{26}=-\frac{260}{26}
Divide both sides by 26.
x^{2}+\left(-\frac{182}{26}\right)x=-\frac{260}{26}
Dividing by 26 undoes the multiplication by 26.
x^{2}-7x=-\frac{260}{26}
Divide -182 by 26.
x^{2}-7x=-10
Divide -260 by 26.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-10+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-10+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{9}{4}
Add -10 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{3}{2} x-\frac{7}{2}=-\frac{3}{2}
Simplify.
x=5 x=2
Add \frac{7}{2} to both sides of the equation.
x=5
Variable x cannot be equal to 2.